
The Data Challenge

The End User Challenge

SOLIXCloud Application Retirement as-a-service

Solving the Data Challenge

Solving the End User Challenge

Putting it all together

MARK LEE

Senior Vice President, Services
Solix Technologies, Inc.
https://www.solix.com

Cost Savings Opportunities
from Decommissioning
Inactive Applications

1

2

3

4

5

6

The Data Challenge

Data contained in inactive applications may still have significant value to an organization. The
data may be needed to comply with industry or corporate policies or data protection and
privacy regulations. It may be needed for a variety of business reasons like customer support,
product and warranty support, or financial audits. Just discarding this data is not a viable
option for many applications.

To harvest the potential cost savings, the data from the inactive application must be moved
to a new home. Typically, this new home is some type of archive. The question about this
move is how to retain access to the application’s data once the application that created it is
gone. This challenge is especially difficult for data created by complex, enterprise-class
commercial applications (and it is no piece of cake for custom applications either). These
applications may have complex data models with tens of thousands of tables and hundreds
of thousands of columns (plus associated documents and attachments). How can anyone
possibly understand and use the data from a complex data model without the application?
This is the data model problem.

To further describe this problem, imagine an enterprise-class financial, manufacturing,
distribution, and support application with 50,000 tables and 1 million columns. Further,
imagine that this data model was not implemented with any primary or foreign key
relationships defined in the model itself (and that all of these relationships were defined in
the application code which is going away when the application is decommissioned). Also,
imagine that you do not have access to the application source code or technical
documentation to begin to understand this data model (or have no interest in trying to do so).
Lastly, imagine that this application data model was developed by programmers that loved
complexity and used obscure naming conventions for every table and column (as if to make
your job even more impossible). Unfortunately, this is the scenario for most major package
applications from SAP to Oracle E-Business Suite to PeopleSoft to Siebel to many others.

In the face of this data model problem, what is one to do? A variety of techniques have been
tried to varying degrees of success. Some will advocate the use of data modeling tools to
analyze the data model and represent it graphically in a way that makes it easier to
understand and access. Another technique that is sometimes employed is a code analyzer
(assuming access to source code is available). These analyzers can scan the code and
discover the hidden primary and foreign key relationships that define key objects in the
application. The most common technique is to reverse engineer key screens and reports in
the application to determine which tables are being used and how they are related (using log
analyzers to view the sql statements being executed by the database). Each of these
techniques requires skilled data analysts and archivists. As of the date of this writing, there is
no silver bullet technology that will solve the data model problem without applying a significant
amount of technical and application expertise.

There are few projects in IT easier to quantify cost savings and ROI than projects to
decommission inactive applications. Older applications pile up in the corner of the data
center as the organization modernizes their portfolio and as acquired companies are
transitioned onto the company standard applications. Costs for maintaining inactive
applications may include license and support fees for both software and hardware, data
center charges, labor costs for application maintenance and backups, and labor costs for
application support. The Applications Director for a large manufacturing company described
the process of finding savings for his application decommissioning project like this: “It was
as easy as walking through the data center and bending over to pick up hundred-dollar
bills”.

A study done by the Compliance, Governance, and Oversight Council (CGOC)1 showed that the
average annual cost savings for decommissioning inactive applications was $40,000 and that
for larger, enterprise class applications, the annual savings could exceed $120,000. With
typical application portfolios, large organizations may have hundreds of inactive applications
which could yield annual savings of millions of dollars if a cost-effective way to
decommission them could be found.

While measuring the potential cost savings for decommissioning inactive applications may
be easy, harvesting these savings can be more of a challenge. This challenge comes down to
two simple things:

1. the data contained in the inactive applications and
2. the application users that still depend on access to that data to perform their jobs.

An inactive application may contain valuable financial data needed by auditors or it may
contain important customer history data needed by the customer support team. Whatever
the use case may be, before harvesting the potential savings for decommissioning an
inactive application, a company will need to devise a strategy for dealing with this data and
the users that depend on it.

The data challenge (discussed below) will remain the same regardless of when the project to
decommission the application is started. The end-user challenge, however, will vary
significantly depending on this timing. The more time that has elapsed since the application
was inactivated, the fewer demands end-users will have for data access. Decommission an
application that was inactivated one week ago, and end users will demand nearly the same
level of data access that they had when the application was live. Decommission the same
application one year later, and the end-user demands for data access will have been reduced
significantly.

1 CGO “Information Lifecycle Governance Leader Reference Guide”

The End User Challenge

Ask any end-user of their preferred method of archiving data from their inactive, legacy
application and you will get the same answer: “No thank you, leave my data alone”.
Obviously, if you follow this advice, you will not be able to harvest the potential cost savings
from decommissioning this inactive application. The conviction of the end-users “No thank
you” will vary inversely to the length of time that the application has been inactive. That
means that to maximize the potential cost savings, you will have to deal with the most intense
end-user resistance. If you wait a few years until the application is forgotten and the intensity
of end-user resistance has faded, most of the potential savings will have evaporated. This
end-user resistance is a classic change management challenge that was discussed in Who
Moved My Cheese? 2. In our situation, we can describe this resistance as “Who moved my
data?”

Let’s look in on a typical scene being played out in a nearby conference room (or Zoom
meeting): Ted, the application director, has recently migrated the company’s financial and
procurement system from a legacy on-premise mainframe application to a modern,
cloud-based financial application. Ted wants to decommission the mainframe to avoid a
$200,000 maintenance renewal bill coming due at the end of quarter, but he knows that he
has to archive all of the accounts payable & receivables invoice data (and other financial
records). Sara is the accounting supervisor and the first stop on Ted’s end-user approval tour
for his decommissioning project.

“So, Sara, what kind of data access do you think you will need from the old financial records
when we retire the mainframe?”

Sara replies, “Well, we used one hundred different AP, AR, and GL reports, so I guess I will need
one hundred reports”.

Ted replies, “but Sara, you have a brand new, cloud-based application to run your department,
why do you need all these reports from the old mainframe data?”

Sara replies, “Ted, I’m really busy closing the books, get back to me when you get those
reports finished and we can talk…”

In the face of this end-user challenge, what is one to do? One option would be to give in to
Sara’s demands and re-create every single report from the legacy application to run inside
the archive. Another would be to ignore Sara and risk her wrath when the reports go away.
Neither of these options is viable. Remember, the reason for decommissioning the legacy
application was to harvest cost savings from doing so. If you spend all of these potential
savings recreating the application reports inside the archive, what have you accomplished?

Clearly, between the data challenge and the end-user challenge, there will be costs and effort
involved to decommission the inactive application and realize the possible saving
opportunities. The question is how to meet these challenges in the most cost-effective way to
maximize the potential savings?

2 Spencer Johnson, M.D., Who Moved My Cheese, G.P. Putnam’s Son’s, 1998

SOLIXCloud Application Retirement as-a-service

Solix has developed software, a repeatable process and methodology, and a set of factory
services specifically designed to solve the application decommissioning data challenge. The
SOLIXCloud Application Retirement as-a-service solution consists of three main parts:

1. Solix Common Data Platform (CDP) software-as-a-service in the Microsoft Azure
cloud (or private cloud);

2. The Solix Application Retirement Process and Methodology; and
3. Solix Application Retirement Factory Services.

Solving the Data Challenge

First, it is imperative to efficiently migrate data from the legacy application into the archive.
While this may sound simple, it can be quite complex when dealing with large,
enterprise-class applications. Solix CDP supports hundreds of legacy databases and sources
and can automate the process for migrating data. Once migrated, it is important to validate
that the data was moved completely and correctly. Again, Solix CDP automates this process
with extensive validation algorithms for every data type. The validation reports produced by
these algorithms are key to convincing end users and auditors that, when the time comes, it
will be safe to pull the plug on the legacy application.

The crux of the data challenge has to do with context. When the data resided within the
legacy application, the context was provided by that application. When the application is
removed, that context disappears, leaving the data to stand on its own.

Solix has developed steps in our approach and methodology to preserve as much context as
possible to give value back to this data. Many applications contain a data dictionary.
Solix CDP can import this data dictionary and add it to the archive repository. The information
in this dictionary, while relatively straight forward, can make a huge difference when trying to
understand the data model. Imagine a table name “RPXXQ.” Unless you were a developer
familiar with this application, it is highly unlikely that you could ever know what kind of data
was stored in this table. But, if we preserve the user-understandable name for the table
“Accounts Payable Invoices”, it would be a different story.

Another form of context that can add significant value to the data stored in the archive is
static report output. You may have paid millions of dollars for this application and it included
important reporting functionality used to run your business. Before decommissioning the
application, why not run key reports, save the output to PDF files, and archive these reports
alongside the data? Solix CDP provides a way to automate this whole process, called the
Virtual Printer (or you can just ingest previously created report files into the archive).
Someday soon, an auditor looking in the archive for the old financial reports will thank you.

One of the most important forms of technical context for legacy applications are custom
reports that you may have created over the years. These reports contain valuable query code
that can be extracted and saved to text files which can be archived along with the data.
Preserving these queries in the archive will go a long way towards meeting the end-user
challenge as well. By utilizing the Solix CDP SQL Editor, you can run these preserved queries
to recreate your custom reports inside the archive.

Because CDP supports both structured data and document data, it is easy to preserve these
documents in the archive which helps preserve the context for the structured data. There are
other documents that can be preserved, if they exist, which will add to this context including
reference manuals, technical documentation, procedure documents, operations documents,
training documents, screen shots, printed statements, printed forms, etc.. You may need to
keep data from your legacy applications for many years. The people accessing the archive
years from now will thank you for preserving all of these documents to help them better
understand the data.

As previously mentioned, there is no silver bullet technology to solve the data problem
without requiring technical and application expertise. That is why the Solix solution includes
a services component: The Solix Application Retirement Factory Service. This service
consists of a large group of data analysts, archivists, and developers that specialize in solving
the application decommissioning data challenge. The members on this factory team are
experts in the techniques previously described like data modeling, code analysis, query log
analysis, and reverse engineering. The team also consists of specialists for most of the
common, enterprise class applications currently being decommissioned. The benefit for
utilizing this factory team is that you don’t have to learn to solve the data problem on your
own. Let the Solix archiving experts help you through this hurdle.

One of the most important benefits of working with the Solix Application Retirement Factory
team is gaining access to their extensive library of project accelerators for specific
applications.

Over time, this team has decommissioned hundreds of different applications and has built up
a library of accelerators to speed up delivery of useful and compelling data access to end
users, while keeping costs to a minimum. These accelerators are available for many of the
major enterprise applications and consist of pre-defined business object models, reports,
and forms. More on business object models later. If you need to decommission one of these
applications, the data problem has already been solved for you by utilizing this factory
service.

Here is a small sample of the types of applications that have been retired by the factory team:

In our view, the key to solving the data problem in an application decommission project is to
understand the business object models used by the application. For example, in an accounts
receivable application, the key object model is the invoice. In a general ledger application, key
objects are journals and budgets. In a customer service application, a key object is the service
order. In most applications the number of objects is typically a fraction of the number of
reports / screens. If we can focus on defining these key objects rather than on replicating
reports, we can cut the work on the retirement project down to size.

How can this be accomplished? Solix CDP introduced the concept of the Enterprise Business
Record (EBR) to accomplish this goal. The EBR is a model of the entire business object
(including both structured and unstructured data) stored in a denormalized, flattened
structure. By itself, a model is just a model. What good is it? In CDP, the EBR comes to life
through the power of search. Since Dr. E.F. Codd invented the relational database, structured
query language (SQL) has been the lingua franca for database access. In the early days of
SQL, it was a huge leap forward in usability and allowed technically proficient users and IT
professionals to access data without having to write programs in lower level languages.
With the advent of modern reporting and analytics tools, users no longer had to write any SQL
at all because the tools did that for them. They just had to have an understanding of the data
model. Which brings us back to the original data model problem. The EBR with search
changes this paradigm. Now, a business user can access their data without having to know
anything about SQL or about the underlying data model.

They only need to know how to use a text search tool. The EBR with Search enables the
concept of self-service, end-user data access.

With a modest investment to define the application’s key business objects as EBRs, and the
power of search enabled by SOLIXCloud, an organization can meet the end-user data access
requirements and keeps costs low to maximize the savings that can be harvested and be
returned to the IT budget for use on more strategic initiatives.

Solving the End User Challenge

The reluctance of application end users to allow their data to be moved to an archive should
not be a surprise. Every end user organization has their own mission and challenges and
asking them to take some of their valuable time to learn a new way to access data will need to
be justified. For many end users, the answer will be to either leave the application in place or
to replicate all of the screens and reports in the application before decommissioning it. As we
have seen, neither of these options are viable if we wish to harvest any cost savings.

The answer for many organizations is the adoption of self-service, end-user data access
powered by EBRs and search. As we have seen, one EBR representing a key business object in
the application can replace many screens and reports. Coupled with the project accelerators
provided by the Solix Application Retirement Factory team, which include out-of-the-box EBR
definitions for most enterprise class commercial applications, you have the start to a very
cost-effective solution to this challenge.

Solix CDP enables self-service, end-user data access through a workbench of tools for ad hoc
query, structured reports and text search. Role-based security enforces access control in
Solix CDP, meaning users can only retrieve data that they have been authorized to see. Once
an end-user retrieves their search result, the data can be easily loaded into Excel where the
user can slice and dice, sort, and format the data as they see fit. This capability makes it
possible for a single EBR to replace multiple SQL based reports and forms and more
importantly, eliminates the user from understanding the complexities behind the data.

Here is a simple search example from a decommissioned PeopleSoft application:

Based on our experience, EBRs address many of the use cases through self-service. However,
Solix CDP also provides the flexibility of other data access options including online forms,
fixed format reports, ad-hoc SQL reports, use of existing SQL code, and access to data using
other reporting and analytics tools.

For use cases where the data must be retrieved in real time and frequently, Solix CDP provides
a forms functionality to replicate an application inquiry screen. This might be useful for a
customer support team that needs to look up customer history or product warranty
information from the archive while the customer is on the phone.

For situations where a fixed format report is needed, Solix CDP provides a graphical report
writer. This can be useful when the same information needs to be retrieved frequently and
delivered in a fixed format to the requestor. A fixed format report might be useful for an
accounting team needing to provide an account reconciliation report to an outside auditor in
an Excel workbook. Or, an HR team might need to produce a timesheet report for an employee
or department and deliver the data in a PDF format. The CDP report writer would be an
appropriate tool for these use cases.

There may be situations where ad-hoc queries are required as well as searches, forms, or
reports. For this use case, Solix CDP provides the SQL Editor functionality. Typically used by
an IT professional, the SQL Editor allows for direct entry and execution of a SQL statement
(assuming the user has been granted access to the requested tables) as well as execution of
sql statements stored in text files. As previously noted, a best practice recommended by the
Solix Application Retirement Factory team is to preserve custom SQL report code in the
archive for future use. Not only can this code provide valuable insight into the data model, but
in many cases, it can be executed directly against the tables now stored in the archive. Solix
CDP uses an ANSI SQL compatible query engine, so the custom SQL code is likely usable as-is
and in rare cases it may need to be tweaked to work in this environment. If a large number of
custom reports existed for the custom application and it is possible to harvest the SQL code
from these reports, re-creating them using the SQL editor can be a very cost-effective way to
meet the end user data access requirements. These queries can also be saved for future
reuse.

The final data access functionality option available in Solix CDP is the CDP API. This API makes
it possible for end users to access data in the archive using other data reporting and analytics
tools. The CDP API uses a standards-based REST technology, making it compatible with most
modern tools.

Now, what is the best way to meet the end user resistance challenge? Solix recommends
minimizing the amount of effort spent up front building data access. The most common
mistake made by organizations is to assume that all of the reports that were needed when the
application was in production running the business will be needed after the application has
been decommissioned. All too often, organizations will build expensive reports up front and
find that they are rarely or never used. If it seems that this recommendation to minimize
reporting seems to be in direct conflict with the end-user resistance challenge, it absolutely
is. So, what is to be done? A balance must be struck between the end-user reporting demands
and the cost of the project (which will eat up potential cost savings).

That balance can usually be found with the combination of self-service end-user data access
powered by EBRs and search, and the use of saved custom sql reports run via the CDP SQL
Editor. No two organizations or applications are the same but using these techniques will
typically lead to an acceptable compromise between IT and their end users.

Putting it all together

A successful application decommissioning project must be delivered for a price that is less
than the potential cost savings. There are some exceptions to this rule such as the need to
bring legacy data into compliance with new data protection and privacy laws, or the urgent
need to move data off of an unstable and unsupported hardware platform. But, for most
projects, if the price of the project is greater than the potential savings, the project will not be
economically viable. The successful project must also solve the data problem and the end
user resistance problem within these constraints.

SOLIXCloud Application Retirement as-a-service can meet these challenges. SOLIXCloud can
solve the data problem with the help of data experts on the factory team and their library of
project accelerators. SOLIXCloud also solves end-user resistance problems with the use of
self-service end user data access powered by EBRs and search. Lastly, SOLIXCloud can
deliver your application decommissioning project for the lowest possible cost per application
yielding the greatest savings for your organization.

Let’s look back in on Ted and Sara who have just attended a demonstration of SOLIXCloud
Application Retirement as a Service.

“So, Sara, what do you think of the EBR concept?”

Sara answers “Does this mean I can search for my invoices, journals, and budgets and get the data
into a spreadsheet on my own?”

Ted replies “Absolutely”.

“And can I sort and format the data any way I want?”

“Absolutely” says Ted.

“And does this mean I won’t have to submit report requests to your team and wait two weeks to
get my data?” Sara asks.

 “Absolutely” says Ted.

“Then count me in, you have my support” says Sara.

“Great, that means, we will save a huge amount of money by decommissioning this application to
the Solix Cloud”, says Ted.

“Awesome” says Sara, “Here is my enhancement list for the new application. Please use those
savings to get these done. By the way, we need the enhancements done by next quarter.”

 And, so ends another chapter in the never-ending circle of application lifecycle.

1

“It was as easy as walking through the data center and bending over to
pick up hundred-dollar bills”

The Data Challenge

Data contained in inactive applications may still have significant value to an organization. The
data may be needed to comply with industry or corporate policies or data protection and
privacy regulations. It may be needed for a variety of business reasons like customer support,
product and warranty support, or financial audits. Just discarding this data is not a viable
option for many applications.

To harvest the potential cost savings, the data from the inactive application must be moved
to a new home. Typically, this new home is some type of archive. The question about this
move is how to retain access to the application’s data once the application that created it is
gone. This challenge is especially difficult for data created by complex, enterprise-class
commercial applications (and it is no piece of cake for custom applications either). These
applications may have complex data models with tens of thousands of tables and hundreds
of thousands of columns (plus associated documents and attachments). How can anyone
possibly understand and use the data from a complex data model without the application?
This is the data model problem.

To further describe this problem, imagine an enterprise-class financial, manufacturing,
distribution, and support application with 50,000 tables and 1 million columns. Further,
imagine that this data model was not implemented with any primary or foreign key
relationships defined in the model itself (and that all of these relationships were defined in
the application code which is going away when the application is decommissioned). Also,
imagine that you do not have access to the application source code or technical
documentation to begin to understand this data model (or have no interest in trying to do so).
Lastly, imagine that this application data model was developed by programmers that loved
complexity and used obscure naming conventions for every table and column (as if to make
your job even more impossible). Unfortunately, this is the scenario for most major package
applications from SAP to Oracle E-Business Suite to PeopleSoft to Siebel to many others.

In the face of this data model problem, what is one to do? A variety of techniques have been
tried to varying degrees of success. Some will advocate the use of data modeling tools to
analyze the data model and represent it graphically in a way that makes it easier to
understand and access. Another technique that is sometimes employed is a code analyzer
(assuming access to source code is available). These analyzers can scan the code and
discover the hidden primary and foreign key relationships that define key objects in the
application. The most common technique is to reverse engineer key screens and reports in
the application to determine which tables are being used and how they are related (using log
analyzers to view the sql statements being executed by the database). Each of these
techniques requires skilled data analysts and archivists. As of the date of this writing, there is
no silver bullet technology that will solve the data model problem without applying a significant
amount of technical and application expertise.

There are few projects in IT easier to quantify cost savings and ROI than projects to
decommission inactive applications. Older applications pile up in the corner of the data
center as the organization modernizes their portfolio and as acquired companies are
transitioned onto the company standard applications. Costs for maintaining inactive
applications may include license and support fees for both software and hardware, data
center charges, labor costs for application maintenance and backups, and labor costs for
application support. The Applications Director for a large manufacturing company described
the process of finding savings for his application decommissioning project like this: “It was
as easy as walking through the data center and bending over to pick up hundred-dollar
bills”.

A study done by the Compliance, Governance, and Oversight Council (CGOC)1 showed that the
average annual cost savings for decommissioning inactive applications was $40,000 and that
for larger, enterprise class applications, the annual savings could exceed $120,000. With
typical application portfolios, large organizations may have hundreds of inactive applications
which could yield annual savings of millions of dollars if a cost-effective way to
decommission them could be found.

While measuring the potential cost savings for decommissioning inactive applications may
be easy, harvesting these savings can be more of a challenge. This challenge comes down to
two simple things:

1. the data contained in the inactive applications and
2. the application users that still depend on access to that data to perform their jobs.

An inactive application may contain valuable financial data needed by auditors or it may
contain important customer history data needed by the customer support team. Whatever
the use case may be, before harvesting the potential savings for decommissioning an
inactive application, a company will need to devise a strategy for dealing with this data and
the users that depend on it.

The data challenge (discussed below) will remain the same regardless of when the project to
decommission the application is started. The end-user challenge, however, will vary
significantly depending on this timing. The more time that has elapsed since the application
was inactivated, the fewer demands end-users will have for data access. Decommission an
application that was inactivated one week ago, and end users will demand nearly the same
level of data access that they had when the application was live. Decommission the same
application one year later, and the end-user demands for data access will have been reduced
significantly.

1 CGO “Information Lifecycle Governance Leader Reference Guide”

The End User Challenge

Ask any end-user of their preferred method of archiving data from their inactive, legacy
application and you will get the same answer: “No thank you, leave my data alone”.
Obviously, if you follow this advice, you will not be able to harvest the potential cost savings
from decommissioning this inactive application. The conviction of the end-users “No thank
you” will vary inversely to the length of time that the application has been inactive. That
means that to maximize the potential cost savings, you will have to deal with the most intense
end-user resistance. If you wait a few years until the application is forgotten and the intensity
of end-user resistance has faded, most of the potential savings will have evaporated. This
end-user resistance is a classic change management challenge that was discussed in Who
Moved My Cheese? 2. In our situation, we can describe this resistance as “Who moved my
data?”

Let’s look in on a typical scene being played out in a nearby conference room (or Zoom
meeting): Ted, the application director, has recently migrated the company’s financial and
procurement system from a legacy on-premise mainframe application to a modern,
cloud-based financial application. Ted wants to decommission the mainframe to avoid a
$200,000 maintenance renewal bill coming due at the end of quarter, but he knows that he
has to archive all of the accounts payable & receivables invoice data (and other financial
records). Sara is the accounting supervisor and the first stop on Ted’s end-user approval tour
for his decommissioning project.

“So, Sara, what kind of data access do you think you will need from the old financial records
when we retire the mainframe?”

Sara replies, “Well, we used one hundred different AP, AR, and GL reports, so I guess I will need
one hundred reports”.

Ted replies, “but Sara, you have a brand new, cloud-based application to run your department,
why do you need all these reports from the old mainframe data?”

Sara replies, “Ted, I’m really busy closing the books, get back to me when you get those
reports finished and we can talk…”

In the face of this end-user challenge, what is one to do? One option would be to give in to
Sara’s demands and re-create every single report from the legacy application to run inside
the archive. Another would be to ignore Sara and risk her wrath when the reports go away.
Neither of these options is viable. Remember, the reason for decommissioning the legacy
application was to harvest cost savings from doing so. If you spend all of these potential
savings recreating the application reports inside the archive, what have you accomplished?

Clearly, between the data challenge and the end-user challenge, there will be costs and effort
involved to decommission the inactive application and realize the possible saving
opportunities. The question is how to meet these challenges in the most cost-effective way to
maximize the potential savings?

2 Spencer Johnson, M.D., Who Moved My Cheese, G.P. Putnam’s Son’s, 1998

SOLIXCloud Application Retirement as-a-service

Solix has developed software, a repeatable process and methodology, and a set of factory
services specifically designed to solve the application decommissioning data challenge. The
SOLIXCloud Application Retirement as-a-service solution consists of three main parts:

1. Solix Common Data Platform (CDP) software-as-a-service in the Microsoft Azure
cloud (or private cloud);

2. The Solix Application Retirement Process and Methodology; and
3. Solix Application Retirement Factory Services.

Solving the Data Challenge

First, it is imperative to efficiently migrate data from the legacy application into the archive.
While this may sound simple, it can be quite complex when dealing with large,
enterprise-class applications. Solix CDP supports hundreds of legacy databases and sources
and can automate the process for migrating data. Once migrated, it is important to validate
that the data was moved completely and correctly. Again, Solix CDP automates this process
with extensive validation algorithms for every data type. The validation reports produced by
these algorithms are key to convincing end users and auditors that, when the time comes, it
will be safe to pull the plug on the legacy application.

The crux of the data challenge has to do with context. When the data resided within the
legacy application, the context was provided by that application. When the application is
removed, that context disappears, leaving the data to stand on its own.

Solix has developed steps in our approach and methodology to preserve as much context as
possible to give value back to this data. Many applications contain a data dictionary.
Solix CDP can import this data dictionary and add it to the archive repository. The information
in this dictionary, while relatively straight forward, can make a huge difference when trying to
understand the data model. Imagine a table name “RPXXQ.” Unless you were a developer
familiar with this application, it is highly unlikely that you could ever know what kind of data
was stored in this table. But, if we preserve the user-understandable name for the table
“Accounts Payable Invoices”, it would be a different story.

Another form of context that can add significant value to the data stored in the archive is
static report output. You may have paid millions of dollars for this application and it included
important reporting functionality used to run your business. Before decommissioning the
application, why not run key reports, save the output to PDF files, and archive these reports
alongside the data? Solix CDP provides a way to automate this whole process, called the
Virtual Printer (or you can just ingest previously created report files into the archive).
Someday soon, an auditor looking in the archive for the old financial reports will thank you.

One of the most important forms of technical context for legacy applications are custom
reports that you may have created over the years. These reports contain valuable query code
that can be extracted and saved to text files which can be archived along with the data.
Preserving these queries in the archive will go a long way towards meeting the end-user
challenge as well. By utilizing the Solix CDP SQL Editor, you can run these preserved queries
to recreate your custom reports inside the archive.

Because CDP supports both structured data and document data, it is easy to preserve these
documents in the archive which helps preserve the context for the structured data. There are
other documents that can be preserved, if they exist, which will add to this context including
reference manuals, technical documentation, procedure documents, operations documents,
training documents, screen shots, printed statements, printed forms, etc.. You may need to
keep data from your legacy applications for many years. The people accessing the archive
years from now will thank you for preserving all of these documents to help them better
understand the data.

As previously mentioned, there is no silver bullet technology to solve the data problem
without requiring technical and application expertise. That is why the Solix solution includes
a services component: The Solix Application Retirement Factory Service. This service
consists of a large group of data analysts, archivists, and developers that specialize in solving
the application decommissioning data challenge. The members on this factory team are
experts in the techniques previously described like data modeling, code analysis, query log
analysis, and reverse engineering. The team also consists of specialists for most of the
common, enterprise class applications currently being decommissioned. The benefit for
utilizing this factory team is that you don’t have to learn to solve the data problem on your
own. Let the Solix archiving experts help you through this hurdle.

One of the most important benefits of working with the Solix Application Retirement Factory
team is gaining access to their extensive library of project accelerators for specific
applications.

Over time, this team has decommissioned hundreds of different applications and has built up
a library of accelerators to speed up delivery of useful and compelling data access to end
users, while keeping costs to a minimum. These accelerators are available for many of the
major enterprise applications and consist of pre-defined business object models, reports,
and forms. More on business object models later. If you need to decommission one of these
applications, the data problem has already been solved for you by utilizing this factory
service.

Here is a small sample of the types of applications that have been retired by the factory team:

In our view, the key to solving the data problem in an application decommission project is to
understand the business object models used by the application. For example, in an accounts
receivable application, the key object model is the invoice. In a general ledger application, key
objects are journals and budgets. In a customer service application, a key object is the service
order. In most applications the number of objects is typically a fraction of the number of
reports / screens. If we can focus on defining these key objects rather than on replicating
reports, we can cut the work on the retirement project down to size.

How can this be accomplished? Solix CDP introduced the concept of the Enterprise Business
Record (EBR) to accomplish this goal. The EBR is a model of the entire business object
(including both structured and unstructured data) stored in a denormalized, flattened
structure. By itself, a model is just a model. What good is it? In CDP, the EBR comes to life
through the power of search. Since Dr. E.F. Codd invented the relational database, structured
query language (SQL) has been the lingua franca for database access. In the early days of
SQL, it was a huge leap forward in usability and allowed technically proficient users and IT
professionals to access data without having to write programs in lower level languages.
With the advent of modern reporting and analytics tools, users no longer had to write any SQL
at all because the tools did that for them. They just had to have an understanding of the data
model. Which brings us back to the original data model problem. The EBR with search
changes this paradigm. Now, a business user can access their data without having to know
anything about SQL or about the underlying data model.

They only need to know how to use a text search tool. The EBR with Search enables the
concept of self-service, end-user data access.

With a modest investment to define the application’s key business objects as EBRs, and the
power of search enabled by SOLIXCloud, an organization can meet the end-user data access
requirements and keeps costs low to maximize the savings that can be harvested and be
returned to the IT budget for use on more strategic initiatives.

Solving the End User Challenge

The reluctance of application end users to allow their data to be moved to an archive should
not be a surprise. Every end user organization has their own mission and challenges and
asking them to take some of their valuable time to learn a new way to access data will need to
be justified. For many end users, the answer will be to either leave the application in place or
to replicate all of the screens and reports in the application before decommissioning it. As we
have seen, neither of these options are viable if we wish to harvest any cost savings.

The answer for many organizations is the adoption of self-service, end-user data access
powered by EBRs and search. As we have seen, one EBR representing a key business object in
the application can replace many screens and reports. Coupled with the project accelerators
provided by the Solix Application Retirement Factory team, which include out-of-the-box EBR
definitions for most enterprise class commercial applications, you have the start to a very
cost-effective solution to this challenge.

Solix CDP enables self-service, end-user data access through a workbench of tools for ad hoc
query, structured reports and text search. Role-based security enforces access control in
Solix CDP, meaning users can only retrieve data that they have been authorized to see. Once
an end-user retrieves their search result, the data can be easily loaded into Excel where the
user can slice and dice, sort, and format the data as they see fit. This capability makes it
possible for a single EBR to replace multiple SQL based reports and forms and more
importantly, eliminates the user from understanding the complexities behind the data.

Here is a simple search example from a decommissioned PeopleSoft application:

Based on our experience, EBRs address many of the use cases through self-service. However,
Solix CDP also provides the flexibility of other data access options including online forms,
fixed format reports, ad-hoc SQL reports, use of existing SQL code, and access to data using
other reporting and analytics tools.

For use cases where the data must be retrieved in real time and frequently, Solix CDP provides
a forms functionality to replicate an application inquiry screen. This might be useful for a
customer support team that needs to look up customer history or product warranty
information from the archive while the customer is on the phone.

For situations where a fixed format report is needed, Solix CDP provides a graphical report
writer. This can be useful when the same information needs to be retrieved frequently and
delivered in a fixed format to the requestor. A fixed format report might be useful for an
accounting team needing to provide an account reconciliation report to an outside auditor in
an Excel workbook. Or, an HR team might need to produce a timesheet report for an employee
or department and deliver the data in a PDF format. The CDP report writer would be an
appropriate tool for these use cases.

There may be situations where ad-hoc queries are required as well as searches, forms, or
reports. For this use case, Solix CDP provides the SQL Editor functionality. Typically used by
an IT professional, the SQL Editor allows for direct entry and execution of a SQL statement
(assuming the user has been granted access to the requested tables) as well as execution of
sql statements stored in text files. As previously noted, a best practice recommended by the
Solix Application Retirement Factory team is to preserve custom SQL report code in the
archive for future use. Not only can this code provide valuable insight into the data model, but
in many cases, it can be executed directly against the tables now stored in the archive. Solix
CDP uses an ANSI SQL compatible query engine, so the custom SQL code is likely usable as-is
and in rare cases it may need to be tweaked to work in this environment. If a large number of
custom reports existed for the custom application and it is possible to harvest the SQL code
from these reports, re-creating them using the SQL editor can be a very cost-effective way to
meet the end user data access requirements. These queries can also be saved for future
reuse.

The final data access functionality option available in Solix CDP is the CDP API. This API makes
it possible for end users to access data in the archive using other data reporting and analytics
tools. The CDP API uses a standards-based REST technology, making it compatible with most
modern tools.

Now, what is the best way to meet the end user resistance challenge? Solix recommends
minimizing the amount of effort spent up front building data access. The most common
mistake made by organizations is to assume that all of the reports that were needed when the
application was in production running the business will be needed after the application has
been decommissioned. All too often, organizations will build expensive reports up front and
find that they are rarely or never used. If it seems that this recommendation to minimize
reporting seems to be in direct conflict with the end-user resistance challenge, it absolutely
is. So, what is to be done? A balance must be struck between the end-user reporting demands
and the cost of the project (which will eat up potential cost savings).

That balance can usually be found with the combination of self-service end-user data access
powered by EBRs and search, and the use of saved custom sql reports run via the CDP SQL
Editor. No two organizations or applications are the same but using these techniques will
typically lead to an acceptable compromise between IT and their end users.

Putting it all together

A successful application decommissioning project must be delivered for a price that is less
than the potential cost savings. There are some exceptions to this rule such as the need to
bring legacy data into compliance with new data protection and privacy laws, or the urgent
need to move data off of an unstable and unsupported hardware platform. But, for most
projects, if the price of the project is greater than the potential savings, the project will not be
economically viable. The successful project must also solve the data problem and the end
user resistance problem within these constraints.

SOLIXCloud Application Retirement as-a-service can meet these challenges. SOLIXCloud can
solve the data problem with the help of data experts on the factory team and their library of
project accelerators. SOLIXCloud also solves end-user resistance problems with the use of
self-service end user data access powered by EBRs and search. Lastly, SOLIXCloud can
deliver your application decommissioning project for the lowest possible cost per application
yielding the greatest savings for your organization.

Let’s look back in on Ted and Sara who have just attended a demonstration of SOLIXCloud
Application Retirement as a Service.

“So, Sara, what do you think of the EBR concept?”

Sara answers “Does this mean I can search for my invoices, journals, and budgets and get the data
into a spreadsheet on my own?”

Ted replies “Absolutely”.

“And can I sort and format the data any way I want?”

“Absolutely” says Ted.

“And does this mean I won’t have to submit report requests to your team and wait two weeks to
get my data?” Sara asks.

 “Absolutely” says Ted.

“Then count me in, you have my support” says Sara.

“Great, that means, we will save a huge amount of money by decommissioning this application to
the Solix Cloud”, says Ted.

“Awesome” says Sara, “Here is my enhancement list for the new application. Please use those
savings to get these done. By the way, we need the enhancements done by next quarter.”

 And, so ends another chapter in the never-ending circle of application lifecycle.

2

The Data Challenge

Data contained in inactive applications may still have significant value to an organization. The
data may be needed to comply with industry or corporate policies or data protection and
privacy regulations. It may be needed for a variety of business reasons like customer support,
product and warranty support, or financial audits. Just discarding this data is not a viable
option for many applications.

To harvest the potential cost savings, the data from the inactive application must be moved
to a new home. Typically, this new home is some type of archive. The question about this
move is how to retain access to the application’s data once the application that created it is
gone. This challenge is especially difficult for data created by complex, enterprise-class
commercial applications (and it is no piece of cake for custom applications either). These
applications may have complex data models with tens of thousands of tables and hundreds
of thousands of columns (plus associated documents and attachments). How can anyone
possibly understand and use the data from a complex data model without the application?
This is the data model problem.

To further describe this problem, imagine an enterprise-class financial, manufacturing,
distribution, and support application with 50,000 tables and 1 million columns. Further,
imagine that this data model was not implemented with any primary or foreign key
relationships defined in the model itself (and that all of these relationships were defined in
the application code which is going away when the application is decommissioned). Also,
imagine that you do not have access to the application source code or technical
documentation to begin to understand this data model (or have no interest in trying to do so).
Lastly, imagine that this application data model was developed by programmers that loved
complexity and used obscure naming conventions for every table and column (as if to make
your job even more impossible). Unfortunately, this is the scenario for most major package
applications from SAP to Oracle E-Business Suite to PeopleSoft to Siebel to many others.

In the face of this data model problem, what is one to do? A variety of techniques have been
tried to varying degrees of success. Some will advocate the use of data modeling tools to
analyze the data model and represent it graphically in a way that makes it easier to
understand and access. Another technique that is sometimes employed is a code analyzer
(assuming access to source code is available). These analyzers can scan the code and
discover the hidden primary and foreign key relationships that define key objects in the
application. The most common technique is to reverse engineer key screens and reports in
the application to determine which tables are being used and how they are related (using log
analyzers to view the sql statements being executed by the database). Each of these
techniques requires skilled data analysts and archivists. As of the date of this writing, there is
no silver bullet technology that will solve the data model problem without applying a significant
amount of technical and application expertise.

There are few projects in IT easier to quantify cost savings and ROI than projects to
decommission inactive applications. Older applications pile up in the corner of the data
center as the organization modernizes their portfolio and as acquired companies are
transitioned onto the company standard applications. Costs for maintaining inactive
applications may include license and support fees for both software and hardware, data
center charges, labor costs for application maintenance and backups, and labor costs for
application support. The Applications Director for a large manufacturing company described
the process of finding savings for his application decommissioning project like this: “It was
as easy as walking through the data center and bending over to pick up hundred-dollar
bills”.

A study done by the Compliance, Governance, and Oversight Council (CGOC)1 showed that the
average annual cost savings for decommissioning inactive applications was $40,000 and that
for larger, enterprise class applications, the annual savings could exceed $120,000. With
typical application portfolios, large organizations may have hundreds of inactive applications
which could yield annual savings of millions of dollars if a cost-effective way to
decommission them could be found.

While measuring the potential cost savings for decommissioning inactive applications may
be easy, harvesting these savings can be more of a challenge. This challenge comes down to
two simple things:

1. the data contained in the inactive applications and
2. the application users that still depend on access to that data to perform their jobs.

An inactive application may contain valuable financial data needed by auditors or it may
contain important customer history data needed by the customer support team. Whatever
the use case may be, before harvesting the potential savings for decommissioning an
inactive application, a company will need to devise a strategy for dealing with this data and
the users that depend on it.

The data challenge (discussed below) will remain the same regardless of when the project to
decommission the application is started. The end-user challenge, however, will vary
significantly depending on this timing. The more time that has elapsed since the application
was inactivated, the fewer demands end-users will have for data access. Decommission an
application that was inactivated one week ago, and end users will demand nearly the same
level of data access that they had when the application was live. Decommission the same
application one year later, and the end-user demands for data access will have been reduced
significantly.

1 CGO “Information Lifecycle Governance Leader Reference Guide”

The End User Challenge

Ask any end-user of their preferred method of archiving data from their inactive, legacy
application and you will get the same answer: “No thank you, leave my data alone”.
Obviously, if you follow this advice, you will not be able to harvest the potential cost savings
from decommissioning this inactive application. The conviction of the end-users “No thank
you” will vary inversely to the length of time that the application has been inactive. That
means that to maximize the potential cost savings, you will have to deal with the most intense
end-user resistance. If you wait a few years until the application is forgotten and the intensity
of end-user resistance has faded, most of the potential savings will have evaporated. This
end-user resistance is a classic change management challenge that was discussed in Who
Moved My Cheese? 2. In our situation, we can describe this resistance as “Who moved my
data?”

Let’s look in on a typical scene being played out in a nearby conference room (or Zoom
meeting): Ted, the application director, has recently migrated the company’s financial and
procurement system from a legacy on-premise mainframe application to a modern,
cloud-based financial application. Ted wants to decommission the mainframe to avoid a
$200,000 maintenance renewal bill coming due at the end of quarter, but he knows that he
has to archive all of the accounts payable & receivables invoice data (and other financial
records). Sara is the accounting supervisor and the first stop on Ted’s end-user approval tour
for his decommissioning project.

“So, Sara, what kind of data access do you think you will need from the old financial records
when we retire the mainframe?”

Sara replies, “Well, we used one hundred different AP, AR, and GL reports, so I guess I will need
one hundred reports”.

Ted replies, “but Sara, you have a brand new, cloud-based application to run your department,
why do you need all these reports from the old mainframe data?”

Sara replies, “Ted, I’m really busy closing the books, get back to me when you get those
reports finished and we can talk…”

In the face of this end-user challenge, what is one to do? One option would be to give in to
Sara’s demands and re-create every single report from the legacy application to run inside
the archive. Another would be to ignore Sara and risk her wrath when the reports go away.
Neither of these options is viable. Remember, the reason for decommissioning the legacy
application was to harvest cost savings from doing so. If you spend all of these potential
savings recreating the application reports inside the archive, what have you accomplished?

Clearly, between the data challenge and the end-user challenge, there will be costs and effort
involved to decommission the inactive application and realize the possible saving
opportunities. The question is how to meet these challenges in the most cost-effective way to
maximize the potential savings?

2 Spencer Johnson, M.D., Who Moved My Cheese, G.P. Putnam’s Son’s, 1998

SOLIXCloud Application Retirement as-a-service

Solix has developed software, a repeatable process and methodology, and a set of factory
services specifically designed to solve the application decommissioning data challenge. The
SOLIXCloud Application Retirement as-a-service solution consists of three main parts:

1. Solix Common Data Platform (CDP) software-as-a-service in the Microsoft Azure
cloud (or private cloud);

2. The Solix Application Retirement Process and Methodology; and
3. Solix Application Retirement Factory Services.

Solving the Data Challenge

First, it is imperative to efficiently migrate data from the legacy application into the archive.
While this may sound simple, it can be quite complex when dealing with large,
enterprise-class applications. Solix CDP supports hundreds of legacy databases and sources
and can automate the process for migrating data. Once migrated, it is important to validate
that the data was moved completely and correctly. Again, Solix CDP automates this process
with extensive validation algorithms for every data type. The validation reports produced by
these algorithms are key to convincing end users and auditors that, when the time comes, it
will be safe to pull the plug on the legacy application.

The crux of the data challenge has to do with context. When the data resided within the
legacy application, the context was provided by that application. When the application is
removed, that context disappears, leaving the data to stand on its own.

Solix has developed steps in our approach and methodology to preserve as much context as
possible to give value back to this data. Many applications contain a data dictionary.
Solix CDP can import this data dictionary and add it to the archive repository. The information
in this dictionary, while relatively straight forward, can make a huge difference when trying to
understand the data model. Imagine a table name “RPXXQ.” Unless you were a developer
familiar with this application, it is highly unlikely that you could ever know what kind of data
was stored in this table. But, if we preserve the user-understandable name for the table
“Accounts Payable Invoices”, it would be a different story.

Another form of context that can add significant value to the data stored in the archive is
static report output. You may have paid millions of dollars for this application and it included
important reporting functionality used to run your business. Before decommissioning the
application, why not run key reports, save the output to PDF files, and archive these reports
alongside the data? Solix CDP provides a way to automate this whole process, called the
Virtual Printer (or you can just ingest previously created report files into the archive).
Someday soon, an auditor looking in the archive for the old financial reports will thank you.

One of the most important forms of technical context for legacy applications are custom
reports that you may have created over the years. These reports contain valuable query code
that can be extracted and saved to text files which can be archived along with the data.
Preserving these queries in the archive will go a long way towards meeting the end-user
challenge as well. By utilizing the Solix CDP SQL Editor, you can run these preserved queries
to recreate your custom reports inside the archive.

Because CDP supports both structured data and document data, it is easy to preserve these
documents in the archive which helps preserve the context for the structured data. There are
other documents that can be preserved, if they exist, which will add to this context including
reference manuals, technical documentation, procedure documents, operations documents,
training documents, screen shots, printed statements, printed forms, etc.. You may need to
keep data from your legacy applications for many years. The people accessing the archive
years from now will thank you for preserving all of these documents to help them better
understand the data.

As previously mentioned, there is no silver bullet technology to solve the data problem
without requiring technical and application expertise. That is why the Solix solution includes
a services component: The Solix Application Retirement Factory Service. This service
consists of a large group of data analysts, archivists, and developers that specialize in solving
the application decommissioning data challenge. The members on this factory team are
experts in the techniques previously described like data modeling, code analysis, query log
analysis, and reverse engineering. The team also consists of specialists for most of the
common, enterprise class applications currently being decommissioned. The benefit for
utilizing this factory team is that you don’t have to learn to solve the data problem on your
own. Let the Solix archiving experts help you through this hurdle.

One of the most important benefits of working with the Solix Application Retirement Factory
team is gaining access to their extensive library of project accelerators for specific
applications.

Over time, this team has decommissioned hundreds of different applications and has built up
a library of accelerators to speed up delivery of useful and compelling data access to end
users, while keeping costs to a minimum. These accelerators are available for many of the
major enterprise applications and consist of pre-defined business object models, reports,
and forms. More on business object models later. If you need to decommission one of these
applications, the data problem has already been solved for you by utilizing this factory
service.

Here is a small sample of the types of applications that have been retired by the factory team:

In our view, the key to solving the data problem in an application decommission project is to
understand the business object models used by the application. For example, in an accounts
receivable application, the key object model is the invoice. In a general ledger application, key
objects are journals and budgets. In a customer service application, a key object is the service
order. In most applications the number of objects is typically a fraction of the number of
reports / screens. If we can focus on defining these key objects rather than on replicating
reports, we can cut the work on the retirement project down to size.

How can this be accomplished? Solix CDP introduced the concept of the Enterprise Business
Record (EBR) to accomplish this goal. The EBR is a model of the entire business object
(including both structured and unstructured data) stored in a denormalized, flattened
structure. By itself, a model is just a model. What good is it? In CDP, the EBR comes to life
through the power of search. Since Dr. E.F. Codd invented the relational database, structured
query language (SQL) has been the lingua franca for database access. In the early days of
SQL, it was a huge leap forward in usability and allowed technically proficient users and IT
professionals to access data without having to write programs in lower level languages.
With the advent of modern reporting and analytics tools, users no longer had to write any SQL
at all because the tools did that for them. They just had to have an understanding of the data
model. Which brings us back to the original data model problem. The EBR with search
changes this paradigm. Now, a business user can access their data without having to know
anything about SQL or about the underlying data model.

They only need to know how to use a text search tool. The EBR with Search enables the
concept of self-service, end-user data access.

With a modest investment to define the application’s key business objects as EBRs, and the
power of search enabled by SOLIXCloud, an organization can meet the end-user data access
requirements and keeps costs low to maximize the savings that can be harvested and be
returned to the IT budget for use on more strategic initiatives.

Solving the End User Challenge

The reluctance of application end users to allow their data to be moved to an archive should
not be a surprise. Every end user organization has their own mission and challenges and
asking them to take some of their valuable time to learn a new way to access data will need to
be justified. For many end users, the answer will be to either leave the application in place or
to replicate all of the screens and reports in the application before decommissioning it. As we
have seen, neither of these options are viable if we wish to harvest any cost savings.

The answer for many organizations is the adoption of self-service, end-user data access
powered by EBRs and search. As we have seen, one EBR representing a key business object in
the application can replace many screens and reports. Coupled with the project accelerators
provided by the Solix Application Retirement Factory team, which include out-of-the-box EBR
definitions for most enterprise class commercial applications, you have the start to a very
cost-effective solution to this challenge.

Solix CDP enables self-service, end-user data access through a workbench of tools for ad hoc
query, structured reports and text search. Role-based security enforces access control in
Solix CDP, meaning users can only retrieve data that they have been authorized to see. Once
an end-user retrieves their search result, the data can be easily loaded into Excel where the
user can slice and dice, sort, and format the data as they see fit. This capability makes it
possible for a single EBR to replace multiple SQL based reports and forms and more
importantly, eliminates the user from understanding the complexities behind the data.

Here is a simple search example from a decommissioned PeopleSoft application:

Based on our experience, EBRs address many of the use cases through self-service. However,
Solix CDP also provides the flexibility of other data access options including online forms,
fixed format reports, ad-hoc SQL reports, use of existing SQL code, and access to data using
other reporting and analytics tools.

For use cases where the data must be retrieved in real time and frequently, Solix CDP provides
a forms functionality to replicate an application inquiry screen. This might be useful for a
customer support team that needs to look up customer history or product warranty
information from the archive while the customer is on the phone.

For situations where a fixed format report is needed, Solix CDP provides a graphical report
writer. This can be useful when the same information needs to be retrieved frequently and
delivered in a fixed format to the requestor. A fixed format report might be useful for an
accounting team needing to provide an account reconciliation report to an outside auditor in
an Excel workbook. Or, an HR team might need to produce a timesheet report for an employee
or department and deliver the data in a PDF format. The CDP report writer would be an
appropriate tool for these use cases.

There may be situations where ad-hoc queries are required as well as searches, forms, or
reports. For this use case, Solix CDP provides the SQL Editor functionality. Typically used by
an IT professional, the SQL Editor allows for direct entry and execution of a SQL statement
(assuming the user has been granted access to the requested tables) as well as execution of
sql statements stored in text files. As previously noted, a best practice recommended by the
Solix Application Retirement Factory team is to preserve custom SQL report code in the
archive for future use. Not only can this code provide valuable insight into the data model, but
in many cases, it can be executed directly against the tables now stored in the archive. Solix
CDP uses an ANSI SQL compatible query engine, so the custom SQL code is likely usable as-is
and in rare cases it may need to be tweaked to work in this environment. If a large number of
custom reports existed for the custom application and it is possible to harvest the SQL code
from these reports, re-creating them using the SQL editor can be a very cost-effective way to
meet the end user data access requirements. These queries can also be saved for future
reuse.

The final data access functionality option available in Solix CDP is the CDP API. This API makes
it possible for end users to access data in the archive using other data reporting and analytics
tools. The CDP API uses a standards-based REST technology, making it compatible with most
modern tools.

Now, what is the best way to meet the end user resistance challenge? Solix recommends
minimizing the amount of effort spent up front building data access. The most common
mistake made by organizations is to assume that all of the reports that were needed when the
application was in production running the business will be needed after the application has
been decommissioned. All too often, organizations will build expensive reports up front and
find that they are rarely or never used. If it seems that this recommendation to minimize
reporting seems to be in direct conflict with the end-user resistance challenge, it absolutely
is. So, what is to be done? A balance must be struck between the end-user reporting demands
and the cost of the project (which will eat up potential cost savings).

That balance can usually be found with the combination of self-service end-user data access
powered by EBRs and search, and the use of saved custom sql reports run via the CDP SQL
Editor. No two organizations or applications are the same but using these techniques will
typically lead to an acceptable compromise between IT and their end users.

Putting it all together

A successful application decommissioning project must be delivered for a price that is less
than the potential cost savings. There are some exceptions to this rule such as the need to
bring legacy data into compliance with new data protection and privacy laws, or the urgent
need to move data off of an unstable and unsupported hardware platform. But, for most
projects, if the price of the project is greater than the potential savings, the project will not be
economically viable. The successful project must also solve the data problem and the end
user resistance problem within these constraints.

SOLIXCloud Application Retirement as-a-service can meet these challenges. SOLIXCloud can
solve the data problem with the help of data experts on the factory team and their library of
project accelerators. SOLIXCloud also solves end-user resistance problems with the use of
self-service end user data access powered by EBRs and search. Lastly, SOLIXCloud can
deliver your application decommissioning project for the lowest possible cost per application
yielding the greatest savings for your organization.

Let’s look back in on Ted and Sara who have just attended a demonstration of SOLIXCloud
Application Retirement as a Service.

“So, Sara, what do you think of the EBR concept?”

Sara answers “Does this mean I can search for my invoices, journals, and budgets and get the data
into a spreadsheet on my own?”

Ted replies “Absolutely”.

“And can I sort and format the data any way I want?”

“Absolutely” says Ted.

“And does this mean I won’t have to submit report requests to your team and wait two weeks to
get my data?” Sara asks.

 “Absolutely” says Ted.

“Then count me in, you have my support” says Sara.

“Great, that means, we will save a huge amount of money by decommissioning this application to
the Solix Cloud”, says Ted.

“Awesome” says Sara, “Here is my enhancement list for the new application. Please use those
savings to get these done. By the way, we need the enhancements done by next quarter.”

 And, so ends another chapter in the never-ending circle of application lifecycle.

3

The Data Challenge

Data contained in inactive applications may still have significant value to an organization. The
data may be needed to comply with industry or corporate policies or data protection and
privacy regulations. It may be needed for a variety of business reasons like customer support,
product and warranty support, or financial audits. Just discarding this data is not a viable
option for many applications.

To harvest the potential cost savings, the data from the inactive application must be moved
to a new home. Typically, this new home is some type of archive. The question about this
move is how to retain access to the application’s data once the application that created it is
gone. This challenge is especially difficult for data created by complex, enterprise-class
commercial applications (and it is no piece of cake for custom applications either). These
applications may have complex data models with tens of thousands of tables and hundreds
of thousands of columns (plus associated documents and attachments). How can anyone
possibly understand and use the data from a complex data model without the application?
This is the data model problem.

To further describe this problem, imagine an enterprise-class financial, manufacturing,
distribution, and support application with 50,000 tables and 1 million columns. Further,
imagine that this data model was not implemented with any primary or foreign key
relationships defined in the model itself (and that all of these relationships were defined in
the application code which is going away when the application is decommissioned). Also,
imagine that you do not have access to the application source code or technical
documentation to begin to understand this data model (or have no interest in trying to do so).
Lastly, imagine that this application data model was developed by programmers that loved
complexity and used obscure naming conventions for every table and column (as if to make
your job even more impossible). Unfortunately, this is the scenario for most major package
applications from SAP to Oracle E-Business Suite to PeopleSoft to Siebel to many others.

In the face of this data model problem, what is one to do? A variety of techniques have been
tried to varying degrees of success. Some will advocate the use of data modeling tools to
analyze the data model and represent it graphically in a way that makes it easier to
understand and access. Another technique that is sometimes employed is a code analyzer
(assuming access to source code is available). These analyzers can scan the code and
discover the hidden primary and foreign key relationships that define key objects in the
application. The most common technique is to reverse engineer key screens and reports in
the application to determine which tables are being used and how they are related (using log
analyzers to view the sql statements being executed by the database). Each of these
techniques requires skilled data analysts and archivists. As of the date of this writing, there is
no silver bullet technology that will solve the data model problem without applying a significant
amount of technical and application expertise.

There are few projects in IT easier to quantify cost savings and ROI than projects to
decommission inactive applications. Older applications pile up in the corner of the data
center as the organization modernizes their portfolio and as acquired companies are
transitioned onto the company standard applications. Costs for maintaining inactive
applications may include license and support fees for both software and hardware, data
center charges, labor costs for application maintenance and backups, and labor costs for
application support. The Applications Director for a large manufacturing company described
the process of finding savings for his application decommissioning project like this: “It was
as easy as walking through the data center and bending over to pick up hundred-dollar
bills”.

A study done by the Compliance, Governance, and Oversight Council (CGOC)1 showed that the
average annual cost savings for decommissioning inactive applications was $40,000 and that
for larger, enterprise class applications, the annual savings could exceed $120,000. With
typical application portfolios, large organizations may have hundreds of inactive applications
which could yield annual savings of millions of dollars if a cost-effective way to
decommission them could be found.

While measuring the potential cost savings for decommissioning inactive applications may
be easy, harvesting these savings can be more of a challenge. This challenge comes down to
two simple things:

1. the data contained in the inactive applications and
2. the application users that still depend on access to that data to perform their jobs.

An inactive application may contain valuable financial data needed by auditors or it may
contain important customer history data needed by the customer support team. Whatever
the use case may be, before harvesting the potential savings for decommissioning an
inactive application, a company will need to devise a strategy for dealing with this data and
the users that depend on it.

The data challenge (discussed below) will remain the same regardless of when the project to
decommission the application is started. The end-user challenge, however, will vary
significantly depending on this timing. The more time that has elapsed since the application
was inactivated, the fewer demands end-users will have for data access. Decommission an
application that was inactivated one week ago, and end users will demand nearly the same
level of data access that they had when the application was live. Decommission the same
application one year later, and the end-user demands for data access will have been reduced
significantly.

1 CGO “Information Lifecycle Governance Leader Reference Guide”

The End User Challenge

Ask any end-user of their preferred method of archiving data from their inactive, legacy
application and you will get the same answer: “No thank you, leave my data alone”.
Obviously, if you follow this advice, you will not be able to harvest the potential cost savings
from decommissioning this inactive application. The conviction of the end-users “No thank
you” will vary inversely to the length of time that the application has been inactive. That
means that to maximize the potential cost savings, you will have to deal with the most intense
end-user resistance. If you wait a few years until the application is forgotten and the intensity
of end-user resistance has faded, most of the potential savings will have evaporated. This
end-user resistance is a classic change management challenge that was discussed in Who
Moved My Cheese? 2. In our situation, we can describe this resistance as “Who moved my
data?”

Let’s look in on a typical scene being played out in a nearby conference room (or Zoom
meeting): Ted, the application director, has recently migrated the company’s financial and
procurement system from a legacy on-premise mainframe application to a modern,
cloud-based financial application. Ted wants to decommission the mainframe to avoid a
$200,000 maintenance renewal bill coming due at the end of quarter, but he knows that he
has to archive all of the accounts payable & receivables invoice data (and other financial
records). Sara is the accounting supervisor and the first stop on Ted’s end-user approval tour
for his decommissioning project.

“So, Sara, what kind of data access do you think you will need from the old financial records
when we retire the mainframe?”

Sara replies, “Well, we used one hundred different AP, AR, and GL reports, so I guess I will need
one hundred reports”.

Ted replies, “but Sara, you have a brand new, cloud-based application to run your department,
why do you need all these reports from the old mainframe data?”

Sara replies, “Ted, I’m really busy closing the books, get back to me when you get those
reports finished and we can talk…”

In the face of this end-user challenge, what is one to do? One option would be to give in to
Sara’s demands and re-create every single report from the legacy application to run inside
the archive. Another would be to ignore Sara and risk her wrath when the reports go away.
Neither of these options is viable. Remember, the reason for decommissioning the legacy
application was to harvest cost savings from doing so. If you spend all of these potential
savings recreating the application reports inside the archive, what have you accomplished?

Clearly, between the data challenge and the end-user challenge, there will be costs and effort
involved to decommission the inactive application and realize the possible saving
opportunities. The question is how to meet these challenges in the most cost-effective way to
maximize the potential savings?

2 Spencer Johnson, M.D., Who Moved My Cheese, G.P. Putnam’s Son’s, 1998

SOLIXCloud Application Retirement as-a-service

Solix has developed software, a repeatable process and methodology, and a set of factory
services specifically designed to solve the application decommissioning data challenge. The
SOLIXCloud Application Retirement as-a-service solution consists of three main parts:

1. Solix Common Data Platform (CDP) software-as-a-service in the Microsoft Azure
cloud (or private cloud);

2. The Solix Application Retirement Process and Methodology; and
3. Solix Application Retirement Factory Services.

Solving the Data Challenge

First, it is imperative to efficiently migrate data from the legacy application into the archive.
While this may sound simple, it can be quite complex when dealing with large,
enterprise-class applications. Solix CDP supports hundreds of legacy databases and sources
and can automate the process for migrating data. Once migrated, it is important to validate
that the data was moved completely and correctly. Again, Solix CDP automates this process
with extensive validation algorithms for every data type. The validation reports produced by
these algorithms are key to convincing end users and auditors that, when the time comes, it
will be safe to pull the plug on the legacy application.

The crux of the data challenge has to do with context. When the data resided within the
legacy application, the context was provided by that application. When the application is
removed, that context disappears, leaving the data to stand on its own.

Solix has developed steps in our approach and methodology to preserve as much context as
possible to give value back to this data. Many applications contain a data dictionary.
Solix CDP can import this data dictionary and add it to the archive repository. The information
in this dictionary, while relatively straight forward, can make a huge difference when trying to
understand the data model. Imagine a table name “RPXXQ.” Unless you were a developer
familiar with this application, it is highly unlikely that you could ever know what kind of data
was stored in this table. But, if we preserve the user-understandable name for the table
“Accounts Payable Invoices”, it would be a different story.

Another form of context that can add significant value to the data stored in the archive is
static report output. You may have paid millions of dollars for this application and it included
important reporting functionality used to run your business. Before decommissioning the
application, why not run key reports, save the output to PDF files, and archive these reports
alongside the data? Solix CDP provides a way to automate this whole process, called the
Virtual Printer (or you can just ingest previously created report files into the archive).
Someday soon, an auditor looking in the archive for the old financial reports will thank you.

One of the most important forms of technical context for legacy applications are custom
reports that you may have created over the years. These reports contain valuable query code
that can be extracted and saved to text files which can be archived along with the data.
Preserving these queries in the archive will go a long way towards meeting the end-user
challenge as well. By utilizing the Solix CDP SQL Editor, you can run these preserved queries
to recreate your custom reports inside the archive.

Because CDP supports both structured data and document data, it is easy to preserve these
documents in the archive which helps preserve the context for the structured data. There are
other documents that can be preserved, if they exist, which will add to this context including
reference manuals, technical documentation, procedure documents, operations documents,
training documents, screen shots, printed statements, printed forms, etc.. You may need to
keep data from your legacy applications for many years. The people accessing the archive
years from now will thank you for preserving all of these documents to help them better
understand the data.

As previously mentioned, there is no silver bullet technology to solve the data problem
without requiring technical and application expertise. That is why the Solix solution includes
a services component: The Solix Application Retirement Factory Service. This service
consists of a large group of data analysts, archivists, and developers that specialize in solving
the application decommissioning data challenge. The members on this factory team are
experts in the techniques previously described like data modeling, code analysis, query log
analysis, and reverse engineering. The team also consists of specialists for most of the
common, enterprise class applications currently being decommissioned. The benefit for
utilizing this factory team is that you don’t have to learn to solve the data problem on your
own. Let the Solix archiving experts help you through this hurdle.

One of the most important benefits of working with the Solix Application Retirement Factory
team is gaining access to their extensive library of project accelerators for specific
applications.

Over time, this team has decommissioned hundreds of different applications and has built up
a library of accelerators to speed up delivery of useful and compelling data access to end
users, while keeping costs to a minimum. These accelerators are available for many of the
major enterprise applications and consist of pre-defined business object models, reports,
and forms. More on business object models later. If you need to decommission one of these
applications, the data problem has already been solved for you by utilizing this factory
service.

Here is a small sample of the types of applications that have been retired by the factory team:

In our view, the key to solving the data problem in an application decommission project is to
understand the business object models used by the application. For example, in an accounts
receivable application, the key object model is the invoice. In a general ledger application, key
objects are journals and budgets. In a customer service application, a key object is the service
order. In most applications the number of objects is typically a fraction of the number of
reports / screens. If we can focus on defining these key objects rather than on replicating
reports, we can cut the work on the retirement project down to size.

How can this be accomplished? Solix CDP introduced the concept of the Enterprise Business
Record (EBR) to accomplish this goal. The EBR is a model of the entire business object
(including both structured and unstructured data) stored in a denormalized, flattened
structure. By itself, a model is just a model. What good is it? In CDP, the EBR comes to life
through the power of search. Since Dr. E.F. Codd invented the relational database, structured
query language (SQL) has been the lingua franca for database access. In the early days of
SQL, it was a huge leap forward in usability and allowed technically proficient users and IT
professionals to access data without having to write programs in lower level languages.
With the advent of modern reporting and analytics tools, users no longer had to write any SQL
at all because the tools did that for them. They just had to have an understanding of the data
model. Which brings us back to the original data model problem. The EBR with search
changes this paradigm. Now, a business user can access their data without having to know
anything about SQL or about the underlying data model.

They only need to know how to use a text search tool. The EBR with Search enables the
concept of self-service, end-user data access.

With a modest investment to define the application’s key business objects as EBRs, and the
power of search enabled by SOLIXCloud, an organization can meet the end-user data access
requirements and keeps costs low to maximize the savings that can be harvested and be
returned to the IT budget for use on more strategic initiatives.

Solving the End User Challenge

The reluctance of application end users to allow their data to be moved to an archive should
not be a surprise. Every end user organization has their own mission and challenges and
asking them to take some of their valuable time to learn a new way to access data will need to
be justified. For many end users, the answer will be to either leave the application in place or
to replicate all of the screens and reports in the application before decommissioning it. As we
have seen, neither of these options are viable if we wish to harvest any cost savings.

The answer for many organizations is the adoption of self-service, end-user data access
powered by EBRs and search. As we have seen, one EBR representing a key business object in
the application can replace many screens and reports. Coupled with the project accelerators
provided by the Solix Application Retirement Factory team, which include out-of-the-box EBR
definitions for most enterprise class commercial applications, you have the start to a very
cost-effective solution to this challenge.

Solix CDP enables self-service, end-user data access through a workbench of tools for ad hoc
query, structured reports and text search. Role-based security enforces access control in
Solix CDP, meaning users can only retrieve data that they have been authorized to see. Once
an end-user retrieves their search result, the data can be easily loaded into Excel where the
user can slice and dice, sort, and format the data as they see fit. This capability makes it
possible for a single EBR to replace multiple SQL based reports and forms and more
importantly, eliminates the user from understanding the complexities behind the data.

Here is a simple search example from a decommissioned PeopleSoft application:

Based on our experience, EBRs address many of the use cases through self-service. However,
Solix CDP also provides the flexibility of other data access options including online forms,
fixed format reports, ad-hoc SQL reports, use of existing SQL code, and access to data using
other reporting and analytics tools.

For use cases where the data must be retrieved in real time and frequently, Solix CDP provides
a forms functionality to replicate an application inquiry screen. This might be useful for a
customer support team that needs to look up customer history or product warranty
information from the archive while the customer is on the phone.

For situations where a fixed format report is needed, Solix CDP provides a graphical report
writer. This can be useful when the same information needs to be retrieved frequently and
delivered in a fixed format to the requestor. A fixed format report might be useful for an
accounting team needing to provide an account reconciliation report to an outside auditor in
an Excel workbook. Or, an HR team might need to produce a timesheet report for an employee
or department and deliver the data in a PDF format. The CDP report writer would be an
appropriate tool for these use cases.

There may be situations where ad-hoc queries are required as well as searches, forms, or
reports. For this use case, Solix CDP provides the SQL Editor functionality. Typically used by
an IT professional, the SQL Editor allows for direct entry and execution of a SQL statement
(assuming the user has been granted access to the requested tables) as well as execution of
sql statements stored in text files. As previously noted, a best practice recommended by the
Solix Application Retirement Factory team is to preserve custom SQL report code in the
archive for future use. Not only can this code provide valuable insight into the data model, but
in many cases, it can be executed directly against the tables now stored in the archive. Solix
CDP uses an ANSI SQL compatible query engine, so the custom SQL code is likely usable as-is
and in rare cases it may need to be tweaked to work in this environment. If a large number of
custom reports existed for the custom application and it is possible to harvest the SQL code
from these reports, re-creating them using the SQL editor can be a very cost-effective way to
meet the end user data access requirements. These queries can also be saved for future
reuse.

The final data access functionality option available in Solix CDP is the CDP API. This API makes
it possible for end users to access data in the archive using other data reporting and analytics
tools. The CDP API uses a standards-based REST technology, making it compatible with most
modern tools.

Now, what is the best way to meet the end user resistance challenge? Solix recommends
minimizing the amount of effort spent up front building data access. The most common
mistake made by organizations is to assume that all of the reports that were needed when the
application was in production running the business will be needed after the application has
been decommissioned. All too often, organizations will build expensive reports up front and
find that they are rarely or never used. If it seems that this recommendation to minimize
reporting seems to be in direct conflict with the end-user resistance challenge, it absolutely
is. So, what is to be done? A balance must be struck between the end-user reporting demands
and the cost of the project (which will eat up potential cost savings).

That balance can usually be found with the combination of self-service end-user data access
powered by EBRs and search, and the use of saved custom sql reports run via the CDP SQL
Editor. No two organizations or applications are the same but using these techniques will
typically lead to an acceptable compromise between IT and their end users.

Putting it all together

A successful application decommissioning project must be delivered for a price that is less
than the potential cost savings. There are some exceptions to this rule such as the need to
bring legacy data into compliance with new data protection and privacy laws, or the urgent
need to move data off of an unstable and unsupported hardware platform. But, for most
projects, if the price of the project is greater than the potential savings, the project will not be
economically viable. The successful project must also solve the data problem and the end
user resistance problem within these constraints.

SOLIXCloud Application Retirement as-a-service can meet these challenges. SOLIXCloud can
solve the data problem with the help of data experts on the factory team and their library of
project accelerators. SOLIXCloud also solves end-user resistance problems with the use of
self-service end user data access powered by EBRs and search. Lastly, SOLIXCloud can
deliver your application decommissioning project for the lowest possible cost per application
yielding the greatest savings for your organization.

Let’s look back in on Ted and Sara who have just attended a demonstration of SOLIXCloud
Application Retirement as a Service.

“So, Sara, what do you think of the EBR concept?”

Sara answers “Does this mean I can search for my invoices, journals, and budgets and get the data
into a spreadsheet on my own?”

Ted replies “Absolutely”.

“And can I sort and format the data any way I want?”

“Absolutely” says Ted.

“And does this mean I won’t have to submit report requests to your team and wait two weeks to
get my data?” Sara asks.

 “Absolutely” says Ted.

“Then count me in, you have my support” says Sara.

“Great, that means, we will save a huge amount of money by decommissioning this application to
the Solix Cloud”, says Ted.

“Awesome” says Sara, “Here is my enhancement list for the new application. Please use those
savings to get these done. By the way, we need the enhancements done by next quarter.”

 And, so ends another chapter in the never-ending circle of application lifecycle.

4

Identify
Candidate

Apps
Data

Classification

Data
Migration

Data
Validation

Produce &
Archive Report

Files

Add Application
Context

Data
Compression

Role Based
Security

Query Data

End-User
Reporting

Retention
Management

Legal HoldRetention
Management

Migrate /
Validate

Data Access
BI / Reporting

Add Context,
Optimize

Repository

The Data Challenge

Data contained in inactive applications may still have significant value to an organization. The
data may be needed to comply with industry or corporate policies or data protection and
privacy regulations. It may be needed for a variety of business reasons like customer support,
product and warranty support, or financial audits. Just discarding this data is not a viable
option for many applications.

To harvest the potential cost savings, the data from the inactive application must be moved
to a new home. Typically, this new home is some type of archive. The question about this
move is how to retain access to the application’s data once the application that created it is
gone. This challenge is especially difficult for data created by complex, enterprise-class
commercial applications (and it is no piece of cake for custom applications either). These
applications may have complex data models with tens of thousands of tables and hundreds
of thousands of columns (plus associated documents and attachments). How can anyone
possibly understand and use the data from a complex data model without the application?
This is the data model problem.

To further describe this problem, imagine an enterprise-class financial, manufacturing,
distribution, and support application with 50,000 tables and 1 million columns. Further,
imagine that this data model was not implemented with any primary or foreign key
relationships defined in the model itself (and that all of these relationships were defined in
the application code which is going away when the application is decommissioned). Also,
imagine that you do not have access to the application source code or technical
documentation to begin to understand this data model (or have no interest in trying to do so).
Lastly, imagine that this application data model was developed by programmers that loved
complexity and used obscure naming conventions for every table and column (as if to make
your job even more impossible). Unfortunately, this is the scenario for most major package
applications from SAP to Oracle E-Business Suite to PeopleSoft to Siebel to many others.

In the face of this data model problem, what is one to do? A variety of techniques have been
tried to varying degrees of success. Some will advocate the use of data modeling tools to
analyze the data model and represent it graphically in a way that makes it easier to
understand and access. Another technique that is sometimes employed is a code analyzer
(assuming access to source code is available). These analyzers can scan the code and
discover the hidden primary and foreign key relationships that define key objects in the
application. The most common technique is to reverse engineer key screens and reports in
the application to determine which tables are being used and how they are related (using log
analyzers to view the sql statements being executed by the database). Each of these
techniques requires skilled data analysts and archivists. As of the date of this writing, there is
no silver bullet technology that will solve the data model problem without applying a significant
amount of technical and application expertise.

There are few projects in IT easier to quantify cost savings and ROI than projects to
decommission inactive applications. Older applications pile up in the corner of the data
center as the organization modernizes their portfolio and as acquired companies are
transitioned onto the company standard applications. Costs for maintaining inactive
applications may include license and support fees for both software and hardware, data
center charges, labor costs for application maintenance and backups, and labor costs for
application support. The Applications Director for a large manufacturing company described
the process of finding savings for his application decommissioning project like this: “It was
as easy as walking through the data center and bending over to pick up hundred-dollar
bills”.

A study done by the Compliance, Governance, and Oversight Council (CGOC)1 showed that the
average annual cost savings for decommissioning inactive applications was $40,000 and that
for larger, enterprise class applications, the annual savings could exceed $120,000. With
typical application portfolios, large organizations may have hundreds of inactive applications
which could yield annual savings of millions of dollars if a cost-effective way to
decommission them could be found.

While measuring the potential cost savings for decommissioning inactive applications may
be easy, harvesting these savings can be more of a challenge. This challenge comes down to
two simple things:

1. the data contained in the inactive applications and
2. the application users that still depend on access to that data to perform their jobs.

An inactive application may contain valuable financial data needed by auditors or it may
contain important customer history data needed by the customer support team. Whatever
the use case may be, before harvesting the potential savings for decommissioning an
inactive application, a company will need to devise a strategy for dealing with this data and
the users that depend on it.

The data challenge (discussed below) will remain the same regardless of when the project to
decommission the application is started. The end-user challenge, however, will vary
significantly depending on this timing. The more time that has elapsed since the application
was inactivated, the fewer demands end-users will have for data access. Decommission an
application that was inactivated one week ago, and end users will demand nearly the same
level of data access that they had when the application was live. Decommission the same
application one year later, and the end-user demands for data access will have been reduced
significantly.

1 CGO “Information Lifecycle Governance Leader Reference Guide”

The End User Challenge

Ask any end-user of their preferred method of archiving data from their inactive, legacy
application and you will get the same answer: “No thank you, leave my data alone”.
Obviously, if you follow this advice, you will not be able to harvest the potential cost savings
from decommissioning this inactive application. The conviction of the end-users “No thank
you” will vary inversely to the length of time that the application has been inactive. That
means that to maximize the potential cost savings, you will have to deal with the most intense
end-user resistance. If you wait a few years until the application is forgotten and the intensity
of end-user resistance has faded, most of the potential savings will have evaporated. This
end-user resistance is a classic change management challenge that was discussed in Who
Moved My Cheese? 2. In our situation, we can describe this resistance as “Who moved my
data?”

Let’s look in on a typical scene being played out in a nearby conference room (or Zoom
meeting): Ted, the application director, has recently migrated the company’s financial and
procurement system from a legacy on-premise mainframe application to a modern,
cloud-based financial application. Ted wants to decommission the mainframe to avoid a
$200,000 maintenance renewal bill coming due at the end of quarter, but he knows that he
has to archive all of the accounts payable & receivables invoice data (and other financial
records). Sara is the accounting supervisor and the first stop on Ted’s end-user approval tour
for his decommissioning project.

“So, Sara, what kind of data access do you think you will need from the old financial records
when we retire the mainframe?”

Sara replies, “Well, we used one hundred different AP, AR, and GL reports, so I guess I will need
one hundred reports”.

Ted replies, “but Sara, you have a brand new, cloud-based application to run your department,
why do you need all these reports from the old mainframe data?”

Sara replies, “Ted, I’m really busy closing the books, get back to me when you get those
reports finished and we can talk…”

In the face of this end-user challenge, what is one to do? One option would be to give in to
Sara’s demands and re-create every single report from the legacy application to run inside
the archive. Another would be to ignore Sara and risk her wrath when the reports go away.
Neither of these options is viable. Remember, the reason for decommissioning the legacy
application was to harvest cost savings from doing so. If you spend all of these potential
savings recreating the application reports inside the archive, what have you accomplished?

Clearly, between the data challenge and the end-user challenge, there will be costs and effort
involved to decommission the inactive application and realize the possible saving
opportunities. The question is how to meet these challenges in the most cost-effective way to
maximize the potential savings?

2 Spencer Johnson, M.D., Who Moved My Cheese, G.P. Putnam’s Son’s, 1998

SOLIXCloud Application Retirement as-a-service

Solix has developed software, a repeatable process and methodology, and a set of factory
services specifically designed to solve the application decommissioning data challenge. The
SOLIXCloud Application Retirement as-a-service solution consists of three main parts:

1. Solix Common Data Platform (CDP) software-as-a-service in the Microsoft Azure
cloud (or private cloud);

2. The Solix Application Retirement Process and Methodology; and
3. Solix Application Retirement Factory Services.

Solving the Data Challenge

First, it is imperative to efficiently migrate data from the legacy application into the archive.
While this may sound simple, it can be quite complex when dealing with large,
enterprise-class applications. Solix CDP supports hundreds of legacy databases and sources
and can automate the process for migrating data. Once migrated, it is important to validate
that the data was moved completely and correctly. Again, Solix CDP automates this process
with extensive validation algorithms for every data type. The validation reports produced by
these algorithms are key to convincing end users and auditors that, when the time comes, it
will be safe to pull the plug on the legacy application.

The crux of the data challenge has to do with context. When the data resided within the
legacy application, the context was provided by that application. When the application is
removed, that context disappears, leaving the data to stand on its own.

Solix has developed steps in our approach and methodology to preserve as much context as
possible to give value back to this data. Many applications contain a data dictionary.
Solix CDP can import this data dictionary and add it to the archive repository. The information
in this dictionary, while relatively straight forward, can make a huge difference when trying to
understand the data model. Imagine a table name “RPXXQ.” Unless you were a developer
familiar with this application, it is highly unlikely that you could ever know what kind of data
was stored in this table. But, if we preserve the user-understandable name for the table
“Accounts Payable Invoices”, it would be a different story.

Another form of context that can add significant value to the data stored in the archive is
static report output. You may have paid millions of dollars for this application and it included
important reporting functionality used to run your business. Before decommissioning the
application, why not run key reports, save the output to PDF files, and archive these reports
alongside the data? Solix CDP provides a way to automate this whole process, called the
Virtual Printer (or you can just ingest previously created report files into the archive).
Someday soon, an auditor looking in the archive for the old financial reports will thank you.

One of the most important forms of technical context for legacy applications are custom
reports that you may have created over the years. These reports contain valuable query code
that can be extracted and saved to text files which can be archived along with the data.
Preserving these queries in the archive will go a long way towards meeting the end-user
challenge as well. By utilizing the Solix CDP SQL Editor, you can run these preserved queries
to recreate your custom reports inside the archive.

Because CDP supports both structured data and document data, it is easy to preserve these
documents in the archive which helps preserve the context for the structured data. There are
other documents that can be preserved, if they exist, which will add to this context including
reference manuals, technical documentation, procedure documents, operations documents,
training documents, screen shots, printed statements, printed forms, etc.. You may need to
keep data from your legacy applications for many years. The people accessing the archive
years from now will thank you for preserving all of these documents to help them better
understand the data.

As previously mentioned, there is no silver bullet technology to solve the data problem
without requiring technical and application expertise. That is why the Solix solution includes
a services component: The Solix Application Retirement Factory Service. This service
consists of a large group of data analysts, archivists, and developers that specialize in solving
the application decommissioning data challenge. The members on this factory team are
experts in the techniques previously described like data modeling, code analysis, query log
analysis, and reverse engineering. The team also consists of specialists for most of the
common, enterprise class applications currently being decommissioned. The benefit for
utilizing this factory team is that you don’t have to learn to solve the data problem on your
own. Let the Solix archiving experts help you through this hurdle.

One of the most important benefits of working with the Solix Application Retirement Factory
team is gaining access to their extensive library of project accelerators for specific
applications.

Over time, this team has decommissioned hundreds of different applications and has built up
a library of accelerators to speed up delivery of useful and compelling data access to end
users, while keeping costs to a minimum. These accelerators are available for many of the
major enterprise applications and consist of pre-defined business object models, reports,
and forms. More on business object models later. If you need to decommission one of these
applications, the data problem has already been solved for you by utilizing this factory
service.

Here is a small sample of the types of applications that have been retired by the factory team:

In our view, the key to solving the data problem in an application decommission project is to
understand the business object models used by the application. For example, in an accounts
receivable application, the key object model is the invoice. In a general ledger application, key
objects are journals and budgets. In a customer service application, a key object is the service
order. In most applications the number of objects is typically a fraction of the number of
reports / screens. If we can focus on defining these key objects rather than on replicating
reports, we can cut the work on the retirement project down to size.

How can this be accomplished? Solix CDP introduced the concept of the Enterprise Business
Record (EBR) to accomplish this goal. The EBR is a model of the entire business object
(including both structured and unstructured data) stored in a denormalized, flattened
structure. By itself, a model is just a model. What good is it? In CDP, the EBR comes to life
through the power of search. Since Dr. E.F. Codd invented the relational database, structured
query language (SQL) has been the lingua franca for database access. In the early days of
SQL, it was a huge leap forward in usability and allowed technically proficient users and IT
professionals to access data without having to write programs in lower level languages.
With the advent of modern reporting and analytics tools, users no longer had to write any SQL
at all because the tools did that for them. They just had to have an understanding of the data
model. Which brings us back to the original data model problem. The EBR with search
changes this paradigm. Now, a business user can access their data without having to know
anything about SQL or about the underlying data model.

They only need to know how to use a text search tool. The EBR with Search enables the
concept of self-service, end-user data access.

With a modest investment to define the application’s key business objects as EBRs, and the
power of search enabled by SOLIXCloud, an organization can meet the end-user data access
requirements and keeps costs low to maximize the savings that can be harvested and be
returned to the IT budget for use on more strategic initiatives.

Solving the End User Challenge

The reluctance of application end users to allow their data to be moved to an archive should
not be a surprise. Every end user organization has their own mission and challenges and
asking them to take some of their valuable time to learn a new way to access data will need to
be justified. For many end users, the answer will be to either leave the application in place or
to replicate all of the screens and reports in the application before decommissioning it. As we
have seen, neither of these options are viable if we wish to harvest any cost savings.

The answer for many organizations is the adoption of self-service, end-user data access
powered by EBRs and search. As we have seen, one EBR representing a key business object in
the application can replace many screens and reports. Coupled with the project accelerators
provided by the Solix Application Retirement Factory team, which include out-of-the-box EBR
definitions for most enterprise class commercial applications, you have the start to a very
cost-effective solution to this challenge.

Solix CDP enables self-service, end-user data access through a workbench of tools for ad hoc
query, structured reports and text search. Role-based security enforces access control in
Solix CDP, meaning users can only retrieve data that they have been authorized to see. Once
an end-user retrieves their search result, the data can be easily loaded into Excel where the
user can slice and dice, sort, and format the data as they see fit. This capability makes it
possible for a single EBR to replace multiple SQL based reports and forms and more
importantly, eliminates the user from understanding the complexities behind the data.

Here is a simple search example from a decommissioned PeopleSoft application:

Based on our experience, EBRs address many of the use cases through self-service. However,
Solix CDP also provides the flexibility of other data access options including online forms,
fixed format reports, ad-hoc SQL reports, use of existing SQL code, and access to data using
other reporting and analytics tools.

For use cases where the data must be retrieved in real time and frequently, Solix CDP provides
a forms functionality to replicate an application inquiry screen. This might be useful for a
customer support team that needs to look up customer history or product warranty
information from the archive while the customer is on the phone.

For situations where a fixed format report is needed, Solix CDP provides a graphical report
writer. This can be useful when the same information needs to be retrieved frequently and
delivered in a fixed format to the requestor. A fixed format report might be useful for an
accounting team needing to provide an account reconciliation report to an outside auditor in
an Excel workbook. Or, an HR team might need to produce a timesheet report for an employee
or department and deliver the data in a PDF format. The CDP report writer would be an
appropriate tool for these use cases.

There may be situations where ad-hoc queries are required as well as searches, forms, or
reports. For this use case, Solix CDP provides the SQL Editor functionality. Typically used by
an IT professional, the SQL Editor allows for direct entry and execution of a SQL statement
(assuming the user has been granted access to the requested tables) as well as execution of
sql statements stored in text files. As previously noted, a best practice recommended by the
Solix Application Retirement Factory team is to preserve custom SQL report code in the
archive for future use. Not only can this code provide valuable insight into the data model, but
in many cases, it can be executed directly against the tables now stored in the archive. Solix
CDP uses an ANSI SQL compatible query engine, so the custom SQL code is likely usable as-is
and in rare cases it may need to be tweaked to work in this environment. If a large number of
custom reports existed for the custom application and it is possible to harvest the SQL code
from these reports, re-creating them using the SQL editor can be a very cost-effective way to
meet the end user data access requirements. These queries can also be saved for future
reuse.

The final data access functionality option available in Solix CDP is the CDP API. This API makes
it possible for end users to access data in the archive using other data reporting and analytics
tools. The CDP API uses a standards-based REST technology, making it compatible with most
modern tools.

Now, what is the best way to meet the end user resistance challenge? Solix recommends
minimizing the amount of effort spent up front building data access. The most common
mistake made by organizations is to assume that all of the reports that were needed when the
application was in production running the business will be needed after the application has
been decommissioned. All too often, organizations will build expensive reports up front and
find that they are rarely or never used. If it seems that this recommendation to minimize
reporting seems to be in direct conflict with the end-user resistance challenge, it absolutely
is. So, what is to be done? A balance must be struck between the end-user reporting demands
and the cost of the project (which will eat up potential cost savings).

That balance can usually be found with the combination of self-service end-user data access
powered by EBRs and search, and the use of saved custom sql reports run via the CDP SQL
Editor. No two organizations or applications are the same but using these techniques will
typically lead to an acceptable compromise between IT and their end users.

Putting it all together

A successful application decommissioning project must be delivered for a price that is less
than the potential cost savings. There are some exceptions to this rule such as the need to
bring legacy data into compliance with new data protection and privacy laws, or the urgent
need to move data off of an unstable and unsupported hardware platform. But, for most
projects, if the price of the project is greater than the potential savings, the project will not be
economically viable. The successful project must also solve the data problem and the end
user resistance problem within these constraints.

SOLIXCloud Application Retirement as-a-service can meet these challenges. SOLIXCloud can
solve the data problem with the help of data experts on the factory team and their library of
project accelerators. SOLIXCloud also solves end-user resistance problems with the use of
self-service end user data access powered by EBRs and search. Lastly, SOLIXCloud can
deliver your application decommissioning project for the lowest possible cost per application
yielding the greatest savings for your organization.

Let’s look back in on Ted and Sara who have just attended a demonstration of SOLIXCloud
Application Retirement as a Service.

“So, Sara, what do you think of the EBR concept?”

Sara answers “Does this mean I can search for my invoices, journals, and budgets and get the data
into a spreadsheet on my own?”

Ted replies “Absolutely”.

“And can I sort and format the data any way I want?”

“Absolutely” says Ted.

“And does this mean I won’t have to submit report requests to your team and wait two weeks to
get my data?” Sara asks.

 “Absolutely” says Ted.

“Then count me in, you have my support” says Sara.

“Great, that means, we will save a huge amount of money by decommissioning this application to
the Solix Cloud”, says Ted.

“Awesome” says Sara, “Here is my enhancement list for the new application. Please use those
savings to get these done. By the way, we need the enhancements done by next quarter.”

 And, so ends another chapter in the never-ending circle of application lifecycle.

5

The Data Challenge

Data contained in inactive applications may still have significant value to an organization. The
data may be needed to comply with industry or corporate policies or data protection and
privacy regulations. It may be needed for a variety of business reasons like customer support,
product and warranty support, or financial audits. Just discarding this data is not a viable
option for many applications.

To harvest the potential cost savings, the data from the inactive application must be moved
to a new home. Typically, this new home is some type of archive. The question about this
move is how to retain access to the application’s data once the application that created it is
gone. This challenge is especially difficult for data created by complex, enterprise-class
commercial applications (and it is no piece of cake for custom applications either). These
applications may have complex data models with tens of thousands of tables and hundreds
of thousands of columns (plus associated documents and attachments). How can anyone
possibly understand and use the data from a complex data model without the application?
This is the data model problem.

To further describe this problem, imagine an enterprise-class financial, manufacturing,
distribution, and support application with 50,000 tables and 1 million columns. Further,
imagine that this data model was not implemented with any primary or foreign key
relationships defined in the model itself (and that all of these relationships were defined in
the application code which is going away when the application is decommissioned). Also,
imagine that you do not have access to the application source code or technical
documentation to begin to understand this data model (or have no interest in trying to do so).
Lastly, imagine that this application data model was developed by programmers that loved
complexity and used obscure naming conventions for every table and column (as if to make
your job even more impossible). Unfortunately, this is the scenario for most major package
applications from SAP to Oracle E-Business Suite to PeopleSoft to Siebel to many others.

In the face of this data model problem, what is one to do? A variety of techniques have been
tried to varying degrees of success. Some will advocate the use of data modeling tools to
analyze the data model and represent it graphically in a way that makes it easier to
understand and access. Another technique that is sometimes employed is a code analyzer
(assuming access to source code is available). These analyzers can scan the code and
discover the hidden primary and foreign key relationships that define key objects in the
application. The most common technique is to reverse engineer key screens and reports in
the application to determine which tables are being used and how they are related (using log
analyzers to view the sql statements being executed by the database). Each of these
techniques requires skilled data analysts and archivists. As of the date of this writing, there is
no silver bullet technology that will solve the data model problem without applying a significant
amount of technical and application expertise.

There are few projects in IT easier to quantify cost savings and ROI than projects to
decommission inactive applications. Older applications pile up in the corner of the data
center as the organization modernizes their portfolio and as acquired companies are
transitioned onto the company standard applications. Costs for maintaining inactive
applications may include license and support fees for both software and hardware, data
center charges, labor costs for application maintenance and backups, and labor costs for
application support. The Applications Director for a large manufacturing company described
the process of finding savings for his application decommissioning project like this: “It was
as easy as walking through the data center and bending over to pick up hundred-dollar
bills”.

A study done by the Compliance, Governance, and Oversight Council (CGOC)1 showed that the
average annual cost savings for decommissioning inactive applications was $40,000 and that
for larger, enterprise class applications, the annual savings could exceed $120,000. With
typical application portfolios, large organizations may have hundreds of inactive applications
which could yield annual savings of millions of dollars if a cost-effective way to
decommission them could be found.

While measuring the potential cost savings for decommissioning inactive applications may
be easy, harvesting these savings can be more of a challenge. This challenge comes down to
two simple things:

1. the data contained in the inactive applications and
2. the application users that still depend on access to that data to perform their jobs.

An inactive application may contain valuable financial data needed by auditors or it may
contain important customer history data needed by the customer support team. Whatever
the use case may be, before harvesting the potential savings for decommissioning an
inactive application, a company will need to devise a strategy for dealing with this data and
the users that depend on it.

The data challenge (discussed below) will remain the same regardless of when the project to
decommission the application is started. The end-user challenge, however, will vary
significantly depending on this timing. The more time that has elapsed since the application
was inactivated, the fewer demands end-users will have for data access. Decommission an
application that was inactivated one week ago, and end users will demand nearly the same
level of data access that they had when the application was live. Decommission the same
application one year later, and the end-user demands for data access will have been reduced
significantly.

1 CGO “Information Lifecycle Governance Leader Reference Guide”

The End User Challenge

Ask any end-user of their preferred method of archiving data from their inactive, legacy
application and you will get the same answer: “No thank you, leave my data alone”.
Obviously, if you follow this advice, you will not be able to harvest the potential cost savings
from decommissioning this inactive application. The conviction of the end-users “No thank
you” will vary inversely to the length of time that the application has been inactive. That
means that to maximize the potential cost savings, you will have to deal with the most intense
end-user resistance. If you wait a few years until the application is forgotten and the intensity
of end-user resistance has faded, most of the potential savings will have evaporated. This
end-user resistance is a classic change management challenge that was discussed in Who
Moved My Cheese? 2. In our situation, we can describe this resistance as “Who moved my
data?”

Let’s look in on a typical scene being played out in a nearby conference room (or Zoom
meeting): Ted, the application director, has recently migrated the company’s financial and
procurement system from a legacy on-premise mainframe application to a modern,
cloud-based financial application. Ted wants to decommission the mainframe to avoid a
$200,000 maintenance renewal bill coming due at the end of quarter, but he knows that he
has to archive all of the accounts payable & receivables invoice data (and other financial
records). Sara is the accounting supervisor and the first stop on Ted’s end-user approval tour
for his decommissioning project.

“So, Sara, what kind of data access do you think you will need from the old financial records
when we retire the mainframe?”

Sara replies, “Well, we used one hundred different AP, AR, and GL reports, so I guess I will need
one hundred reports”.

Ted replies, “but Sara, you have a brand new, cloud-based application to run your department,
why do you need all these reports from the old mainframe data?”

Sara replies, “Ted, I’m really busy closing the books, get back to me when you get those
reports finished and we can talk…”

In the face of this end-user challenge, what is one to do? One option would be to give in to
Sara’s demands and re-create every single report from the legacy application to run inside
the archive. Another would be to ignore Sara and risk her wrath when the reports go away.
Neither of these options is viable. Remember, the reason for decommissioning the legacy
application was to harvest cost savings from doing so. If you spend all of these potential
savings recreating the application reports inside the archive, what have you accomplished?

Clearly, between the data challenge and the end-user challenge, there will be costs and effort
involved to decommission the inactive application and realize the possible saving
opportunities. The question is how to meet these challenges in the most cost-effective way to
maximize the potential savings?

2 Spencer Johnson, M.D., Who Moved My Cheese, G.P. Putnam’s Son’s, 1998

SOLIXCloud Application Retirement as-a-service

Solix has developed software, a repeatable process and methodology, and a set of factory
services specifically designed to solve the application decommissioning data challenge. The
SOLIXCloud Application Retirement as-a-service solution consists of three main parts:

1. Solix Common Data Platform (CDP) software-as-a-service in the Microsoft Azure
cloud (or private cloud);

2. The Solix Application Retirement Process and Methodology; and
3. Solix Application Retirement Factory Services.

Solving the Data Challenge

First, it is imperative to efficiently migrate data from the legacy application into the archive.
While this may sound simple, it can be quite complex when dealing with large,
enterprise-class applications. Solix CDP supports hundreds of legacy databases and sources
and can automate the process for migrating data. Once migrated, it is important to validate
that the data was moved completely and correctly. Again, Solix CDP automates this process
with extensive validation algorithms for every data type. The validation reports produced by
these algorithms are key to convincing end users and auditors that, when the time comes, it
will be safe to pull the plug on the legacy application.

The crux of the data challenge has to do with context. When the data resided within the
legacy application, the context was provided by that application. When the application is
removed, that context disappears, leaving the data to stand on its own.

Solix has developed steps in our approach and methodology to preserve as much context as
possible to give value back to this data. Many applications contain a data dictionary.
Solix CDP can import this data dictionary and add it to the archive repository. The information
in this dictionary, while relatively straight forward, can make a huge difference when trying to
understand the data model. Imagine a table name “RPXXQ.” Unless you were a developer
familiar with this application, it is highly unlikely that you could ever know what kind of data
was stored in this table. But, if we preserve the user-understandable name for the table
“Accounts Payable Invoices”, it would be a different story.

Another form of context that can add significant value to the data stored in the archive is
static report output. You may have paid millions of dollars for this application and it included
important reporting functionality used to run your business. Before decommissioning the
application, why not run key reports, save the output to PDF files, and archive these reports
alongside the data? Solix CDP provides a way to automate this whole process, called the
Virtual Printer (or you can just ingest previously created report files into the archive).
Someday soon, an auditor looking in the archive for the old financial reports will thank you.

One of the most important forms of technical context for legacy applications are custom
reports that you may have created over the years. These reports contain valuable query code
that can be extracted and saved to text files which can be archived along with the data.
Preserving these queries in the archive will go a long way towards meeting the end-user
challenge as well. By utilizing the Solix CDP SQL Editor, you can run these preserved queries
to recreate your custom reports inside the archive.

Because CDP supports both structured data and document data, it is easy to preserve these
documents in the archive which helps preserve the context for the structured data. There are
other documents that can be preserved, if they exist, which will add to this context including
reference manuals, technical documentation, procedure documents, operations documents,
training documents, screen shots, printed statements, printed forms, etc.. You may need to
keep data from your legacy applications for many years. The people accessing the archive
years from now will thank you for preserving all of these documents to help them better
understand the data.

As previously mentioned, there is no silver bullet technology to solve the data problem
without requiring technical and application expertise. That is why the Solix solution includes
a services component: The Solix Application Retirement Factory Service. This service
consists of a large group of data analysts, archivists, and developers that specialize in solving
the application decommissioning data challenge. The members on this factory team are
experts in the techniques previously described like data modeling, code analysis, query log
analysis, and reverse engineering. The team also consists of specialists for most of the
common, enterprise class applications currently being decommissioned. The benefit for
utilizing this factory team is that you don’t have to learn to solve the data problem on your
own. Let the Solix archiving experts help you through this hurdle.

One of the most important benefits of working with the Solix Application Retirement Factory
team is gaining access to their extensive library of project accelerators for specific
applications.

Over time, this team has decommissioned hundreds of different applications and has built up
a library of accelerators to speed up delivery of useful and compelling data access to end
users, while keeping costs to a minimum. These accelerators are available for many of the
major enterprise applications and consist of pre-defined business object models, reports,
and forms. More on business object models later. If you need to decommission one of these
applications, the data problem has already been solved for you by utilizing this factory
service.

Here is a small sample of the types of applications that have been retired by the factory team:

In our view, the key to solving the data problem in an application decommission project is to
understand the business object models used by the application. For example, in an accounts
receivable application, the key object model is the invoice. In a general ledger application, key
objects are journals and budgets. In a customer service application, a key object is the service
order. In most applications the number of objects is typically a fraction of the number of
reports / screens. If we can focus on defining these key objects rather than on replicating
reports, we can cut the work on the retirement project down to size.

How can this be accomplished? Solix CDP introduced the concept of the Enterprise Business
Record (EBR) to accomplish this goal. The EBR is a model of the entire business object
(including both structured and unstructured data) stored in a denormalized, flattened
structure. By itself, a model is just a model. What good is it? In CDP, the EBR comes to life
through the power of search. Since Dr. E.F. Codd invented the relational database, structured
query language (SQL) has been the lingua franca for database access. In the early days of
SQL, it was a huge leap forward in usability and allowed technically proficient users and IT
professionals to access data without having to write programs in lower level languages.
With the advent of modern reporting and analytics tools, users no longer had to write any SQL
at all because the tools did that for them. They just had to have an understanding of the data
model. Which brings us back to the original data model problem. The EBR with search
changes this paradigm. Now, a business user can access their data without having to know
anything about SQL or about the underlying data model.

They only need to know how to use a text search tool. The EBR with Search enables the
concept of self-service, end-user data access.

With a modest investment to define the application’s key business objects as EBRs, and the
power of search enabled by SOLIXCloud, an organization can meet the end-user data access
requirements and keeps costs low to maximize the savings that can be harvested and be
returned to the IT budget for use on more strategic initiatives.

Solving the End User Challenge

The reluctance of application end users to allow their data to be moved to an archive should
not be a surprise. Every end user organization has their own mission and challenges and
asking them to take some of their valuable time to learn a new way to access data will need to
be justified. For many end users, the answer will be to either leave the application in place or
to replicate all of the screens and reports in the application before decommissioning it. As we
have seen, neither of these options are viable if we wish to harvest any cost savings.

The answer for many organizations is the adoption of self-service, end-user data access
powered by EBRs and search. As we have seen, one EBR representing a key business object in
the application can replace many screens and reports. Coupled with the project accelerators
provided by the Solix Application Retirement Factory team, which include out-of-the-box EBR
definitions for most enterprise class commercial applications, you have the start to a very
cost-effective solution to this challenge.

Solix CDP enables self-service, end-user data access through a workbench of tools for ad hoc
query, structured reports and text search. Role-based security enforces access control in
Solix CDP, meaning users can only retrieve data that they have been authorized to see. Once
an end-user retrieves their search result, the data can be easily loaded into Excel where the
user can slice and dice, sort, and format the data as they see fit. This capability makes it
possible for a single EBR to replace multiple SQL based reports and forms and more
importantly, eliminates the user from understanding the complexities behind the data.

Here is a simple search example from a decommissioned PeopleSoft application:

Based on our experience, EBRs address many of the use cases through self-service. However,
Solix CDP also provides the flexibility of other data access options including online forms,
fixed format reports, ad-hoc SQL reports, use of existing SQL code, and access to data using
other reporting and analytics tools.

For use cases where the data must be retrieved in real time and frequently, Solix CDP provides
a forms functionality to replicate an application inquiry screen. This might be useful for a
customer support team that needs to look up customer history or product warranty
information from the archive while the customer is on the phone.

For situations where a fixed format report is needed, Solix CDP provides a graphical report
writer. This can be useful when the same information needs to be retrieved frequently and
delivered in a fixed format to the requestor. A fixed format report might be useful for an
accounting team needing to provide an account reconciliation report to an outside auditor in
an Excel workbook. Or, an HR team might need to produce a timesheet report for an employee
or department and deliver the data in a PDF format. The CDP report writer would be an
appropriate tool for these use cases.

There may be situations where ad-hoc queries are required as well as searches, forms, or
reports. For this use case, Solix CDP provides the SQL Editor functionality. Typically used by
an IT professional, the SQL Editor allows for direct entry and execution of a SQL statement
(assuming the user has been granted access to the requested tables) as well as execution of
sql statements stored in text files. As previously noted, a best practice recommended by the
Solix Application Retirement Factory team is to preserve custom SQL report code in the
archive for future use. Not only can this code provide valuable insight into the data model, but
in many cases, it can be executed directly against the tables now stored in the archive. Solix
CDP uses an ANSI SQL compatible query engine, so the custom SQL code is likely usable as-is
and in rare cases it may need to be tweaked to work in this environment. If a large number of
custom reports existed for the custom application and it is possible to harvest the SQL code
from these reports, re-creating them using the SQL editor can be a very cost-effective way to
meet the end user data access requirements. These queries can also be saved for future
reuse.

The final data access functionality option available in Solix CDP is the CDP API. This API makes
it possible for end users to access data in the archive using other data reporting and analytics
tools. The CDP API uses a standards-based REST technology, making it compatible with most
modern tools.

Now, what is the best way to meet the end user resistance challenge? Solix recommends
minimizing the amount of effort spent up front building data access. The most common
mistake made by organizations is to assume that all of the reports that were needed when the
application was in production running the business will be needed after the application has
been decommissioned. All too often, organizations will build expensive reports up front and
find that they are rarely or never used. If it seems that this recommendation to minimize
reporting seems to be in direct conflict with the end-user resistance challenge, it absolutely
is. So, what is to be done? A balance must be struck between the end-user reporting demands
and the cost of the project (which will eat up potential cost savings).

That balance can usually be found with the combination of self-service end-user data access
powered by EBRs and search, and the use of saved custom sql reports run via the CDP SQL
Editor. No two organizations or applications are the same but using these techniques will
typically lead to an acceptable compromise between IT and their end users.

Putting it all together

A successful application decommissioning project must be delivered for a price that is less
than the potential cost savings. There are some exceptions to this rule such as the need to
bring legacy data into compliance with new data protection and privacy laws, or the urgent
need to move data off of an unstable and unsupported hardware platform. But, for most
projects, if the price of the project is greater than the potential savings, the project will not be
economically viable. The successful project must also solve the data problem and the end
user resistance problem within these constraints.

SOLIXCloud Application Retirement as-a-service can meet these challenges. SOLIXCloud can
solve the data problem with the help of data experts on the factory team and their library of
project accelerators. SOLIXCloud also solves end-user resistance problems with the use of
self-service end user data access powered by EBRs and search. Lastly, SOLIXCloud can
deliver your application decommissioning project for the lowest possible cost per application
yielding the greatest savings for your organization.

Let’s look back in on Ted and Sara who have just attended a demonstration of SOLIXCloud
Application Retirement as a Service.

“So, Sara, what do you think of the EBR concept?”

Sara answers “Does this mean I can search for my invoices, journals, and budgets and get the data
into a spreadsheet on my own?”

Ted replies “Absolutely”.

“And can I sort and format the data any way I want?”

“Absolutely” says Ted.

“And does this mean I won’t have to submit report requests to your team and wait two weeks to
get my data?” Sara asks.

 “Absolutely” says Ted.

“Then count me in, you have my support” says Sara.

“Great, that means, we will save a huge amount of money by decommissioning this application to
the Solix Cloud”, says Ted.

“Awesome” says Sara, “Here is my enhancement list for the new application. Please use those
savings to get these done. By the way, we need the enhancements done by next quarter.”

 And, so ends another chapter in the never-ending circle of application lifecycle.

6

CRM

• KMS
• Oracle eBusiness
• PeopleSoft
• Siebel

• Oracle
eBusiness

• SAP

• BaaN
• Global SSA
• Great Plains
• JDE
• ManMan

ERP

• Oracle
eBusiness

• PeopleSoft
• Sage FAS100
• SAP

• Infinium
• Mitchell

Humphrey
• NetSuite

OpenAir

Financial

• Mfg Pro
• Oracle eBusiness
• QAD
• SAP

Mfg

Procurement

• Ariba
• Oracle eBusiness
• SAP
• SmartBuy

SCM

• Oracle eBusiness
• SAP • Oracle eBus

• PeopleSoft
• SAP
• Training Tracker

• BIS
• Hire Right
• Infinium
• KBACE
• Kenexa
• Kronos

Talent and HR

• OnBase
• SAI (GRC)

Technology

The Data Challenge

Data contained in inactive applications may still have significant value to an organization. The
data may be needed to comply with industry or corporate policies or data protection and
privacy regulations. It may be needed for a variety of business reasons like customer support,
product and warranty support, or financial audits. Just discarding this data is not a viable
option for many applications.

To harvest the potential cost savings, the data from the inactive application must be moved
to a new home. Typically, this new home is some type of archive. The question about this
move is how to retain access to the application’s data once the application that created it is
gone. This challenge is especially difficult for data created by complex, enterprise-class
commercial applications (and it is no piece of cake for custom applications either). These
applications may have complex data models with tens of thousands of tables and hundreds
of thousands of columns (plus associated documents and attachments). How can anyone
possibly understand and use the data from a complex data model without the application?
This is the data model problem.

To further describe this problem, imagine an enterprise-class financial, manufacturing,
distribution, and support application with 50,000 tables and 1 million columns. Further,
imagine that this data model was not implemented with any primary or foreign key
relationships defined in the model itself (and that all of these relationships were defined in
the application code which is going away when the application is decommissioned). Also,
imagine that you do not have access to the application source code or technical
documentation to begin to understand this data model (or have no interest in trying to do so).
Lastly, imagine that this application data model was developed by programmers that loved
complexity and used obscure naming conventions for every table and column (as if to make
your job even more impossible). Unfortunately, this is the scenario for most major package
applications from SAP to Oracle E-Business Suite to PeopleSoft to Siebel to many others.

In the face of this data model problem, what is one to do? A variety of techniques have been
tried to varying degrees of success. Some will advocate the use of data modeling tools to
analyze the data model and represent it graphically in a way that makes it easier to
understand and access. Another technique that is sometimes employed is a code analyzer
(assuming access to source code is available). These analyzers can scan the code and
discover the hidden primary and foreign key relationships that define key objects in the
application. The most common technique is to reverse engineer key screens and reports in
the application to determine which tables are being used and how they are related (using log
analyzers to view the sql statements being executed by the database). Each of these
techniques requires skilled data analysts and archivists. As of the date of this writing, there is
no silver bullet technology that will solve the data model problem without applying a significant
amount of technical and application expertise.

There are few projects in IT easier to quantify cost savings and ROI than projects to
decommission inactive applications. Older applications pile up in the corner of the data
center as the organization modernizes their portfolio and as acquired companies are
transitioned onto the company standard applications. Costs for maintaining inactive
applications may include license and support fees for both software and hardware, data
center charges, labor costs for application maintenance and backups, and labor costs for
application support. The Applications Director for a large manufacturing company described
the process of finding savings for his application decommissioning project like this: “It was
as easy as walking through the data center and bending over to pick up hundred-dollar
bills”.

A study done by the Compliance, Governance, and Oversight Council (CGOC)1 showed that the
average annual cost savings for decommissioning inactive applications was $40,000 and that
for larger, enterprise class applications, the annual savings could exceed $120,000. With
typical application portfolios, large organizations may have hundreds of inactive applications
which could yield annual savings of millions of dollars if a cost-effective way to
decommission them could be found.

While measuring the potential cost savings for decommissioning inactive applications may
be easy, harvesting these savings can be more of a challenge. This challenge comes down to
two simple things:

1. the data contained in the inactive applications and
2. the application users that still depend on access to that data to perform their jobs.

An inactive application may contain valuable financial data needed by auditors or it may
contain important customer history data needed by the customer support team. Whatever
the use case may be, before harvesting the potential savings for decommissioning an
inactive application, a company will need to devise a strategy for dealing with this data and
the users that depend on it.

The data challenge (discussed below) will remain the same regardless of when the project to
decommission the application is started. The end-user challenge, however, will vary
significantly depending on this timing. The more time that has elapsed since the application
was inactivated, the fewer demands end-users will have for data access. Decommission an
application that was inactivated one week ago, and end users will demand nearly the same
level of data access that they had when the application was live. Decommission the same
application one year later, and the end-user demands for data access will have been reduced
significantly.

1 CGO “Information Lifecycle Governance Leader Reference Guide”

The End User Challenge

Ask any end-user of their preferred method of archiving data from their inactive, legacy
application and you will get the same answer: “No thank you, leave my data alone”.
Obviously, if you follow this advice, you will not be able to harvest the potential cost savings
from decommissioning this inactive application. The conviction of the end-users “No thank
you” will vary inversely to the length of time that the application has been inactive. That
means that to maximize the potential cost savings, you will have to deal with the most intense
end-user resistance. If you wait a few years until the application is forgotten and the intensity
of end-user resistance has faded, most of the potential savings will have evaporated. This
end-user resistance is a classic change management challenge that was discussed in Who
Moved My Cheese? 2. In our situation, we can describe this resistance as “Who moved my
data?”

Let’s look in on a typical scene being played out in a nearby conference room (or Zoom
meeting): Ted, the application director, has recently migrated the company’s financial and
procurement system from a legacy on-premise mainframe application to a modern,
cloud-based financial application. Ted wants to decommission the mainframe to avoid a
$200,000 maintenance renewal bill coming due at the end of quarter, but he knows that he
has to archive all of the accounts payable & receivables invoice data (and other financial
records). Sara is the accounting supervisor and the first stop on Ted’s end-user approval tour
for his decommissioning project.

“So, Sara, what kind of data access do you think you will need from the old financial records
when we retire the mainframe?”

Sara replies, “Well, we used one hundred different AP, AR, and GL reports, so I guess I will need
one hundred reports”.

Ted replies, “but Sara, you have a brand new, cloud-based application to run your department,
why do you need all these reports from the old mainframe data?”

Sara replies, “Ted, I’m really busy closing the books, get back to me when you get those
reports finished and we can talk…”

In the face of this end-user challenge, what is one to do? One option would be to give in to
Sara’s demands and re-create every single report from the legacy application to run inside
the archive. Another would be to ignore Sara and risk her wrath when the reports go away.
Neither of these options is viable. Remember, the reason for decommissioning the legacy
application was to harvest cost savings from doing so. If you spend all of these potential
savings recreating the application reports inside the archive, what have you accomplished?

Clearly, between the data challenge and the end-user challenge, there will be costs and effort
involved to decommission the inactive application and realize the possible saving
opportunities. The question is how to meet these challenges in the most cost-effective way to
maximize the potential savings?

2 Spencer Johnson, M.D., Who Moved My Cheese, G.P. Putnam’s Son’s, 1998

SOLIXCloud Application Retirement as-a-service

Solix has developed software, a repeatable process and methodology, and a set of factory
services specifically designed to solve the application decommissioning data challenge. The
SOLIXCloud Application Retirement as-a-service solution consists of three main parts:

1. Solix Common Data Platform (CDP) software-as-a-service in the Microsoft Azure
cloud (or private cloud);

2. The Solix Application Retirement Process and Methodology; and
3. Solix Application Retirement Factory Services.

Solving the Data Challenge

First, it is imperative to efficiently migrate data from the legacy application into the archive.
While this may sound simple, it can be quite complex when dealing with large,
enterprise-class applications. Solix CDP supports hundreds of legacy databases and sources
and can automate the process for migrating data. Once migrated, it is important to validate
that the data was moved completely and correctly. Again, Solix CDP automates this process
with extensive validation algorithms for every data type. The validation reports produced by
these algorithms are key to convincing end users and auditors that, when the time comes, it
will be safe to pull the plug on the legacy application.

The crux of the data challenge has to do with context. When the data resided within the
legacy application, the context was provided by that application. When the application is
removed, that context disappears, leaving the data to stand on its own.

Solix has developed steps in our approach and methodology to preserve as much context as
possible to give value back to this data. Many applications contain a data dictionary.
Solix CDP can import this data dictionary and add it to the archive repository. The information
in this dictionary, while relatively straight forward, can make a huge difference when trying to
understand the data model. Imagine a table name “RPXXQ.” Unless you were a developer
familiar with this application, it is highly unlikely that you could ever know what kind of data
was stored in this table. But, if we preserve the user-understandable name for the table
“Accounts Payable Invoices”, it would be a different story.

Another form of context that can add significant value to the data stored in the archive is
static report output. You may have paid millions of dollars for this application and it included
important reporting functionality used to run your business. Before decommissioning the
application, why not run key reports, save the output to PDF files, and archive these reports
alongside the data? Solix CDP provides a way to automate this whole process, called the
Virtual Printer (or you can just ingest previously created report files into the archive).
Someday soon, an auditor looking in the archive for the old financial reports will thank you.

One of the most important forms of technical context for legacy applications are custom
reports that you may have created over the years. These reports contain valuable query code
that can be extracted and saved to text files which can be archived along with the data.
Preserving these queries in the archive will go a long way towards meeting the end-user
challenge as well. By utilizing the Solix CDP SQL Editor, you can run these preserved queries
to recreate your custom reports inside the archive.

Because CDP supports both structured data and document data, it is easy to preserve these
documents in the archive which helps preserve the context for the structured data. There are
other documents that can be preserved, if they exist, which will add to this context including
reference manuals, technical documentation, procedure documents, operations documents,
training documents, screen shots, printed statements, printed forms, etc.. You may need to
keep data from your legacy applications for many years. The people accessing the archive
years from now will thank you for preserving all of these documents to help them better
understand the data.

As previously mentioned, there is no silver bullet technology to solve the data problem
without requiring technical and application expertise. That is why the Solix solution includes
a services component: The Solix Application Retirement Factory Service. This service
consists of a large group of data analysts, archivists, and developers that specialize in solving
the application decommissioning data challenge. The members on this factory team are
experts in the techniques previously described like data modeling, code analysis, query log
analysis, and reverse engineering. The team also consists of specialists for most of the
common, enterprise class applications currently being decommissioned. The benefit for
utilizing this factory team is that you don’t have to learn to solve the data problem on your
own. Let the Solix archiving experts help you through this hurdle.

One of the most important benefits of working with the Solix Application Retirement Factory
team is gaining access to their extensive library of project accelerators for specific
applications.

Over time, this team has decommissioned hundreds of different applications and has built up
a library of accelerators to speed up delivery of useful and compelling data access to end
users, while keeping costs to a minimum. These accelerators are available for many of the
major enterprise applications and consist of pre-defined business object models, reports,
and forms. More on business object models later. If you need to decommission one of these
applications, the data problem has already been solved for you by utilizing this factory
service.

Here is a small sample of the types of applications that have been retired by the factory team:

In our view, the key to solving the data problem in an application decommission project is to
understand the business object models used by the application. For example, in an accounts
receivable application, the key object model is the invoice. In a general ledger application, key
objects are journals and budgets. In a customer service application, a key object is the service
order. In most applications the number of objects is typically a fraction of the number of
reports / screens. If we can focus on defining these key objects rather than on replicating
reports, we can cut the work on the retirement project down to size.

How can this be accomplished? Solix CDP introduced the concept of the Enterprise Business
Record (EBR) to accomplish this goal. The EBR is a model of the entire business object
(including both structured and unstructured data) stored in a denormalized, flattened
structure. By itself, a model is just a model. What good is it? In CDP, the EBR comes to life
through the power of search. Since Dr. E.F. Codd invented the relational database, structured
query language (SQL) has been the lingua franca for database access. In the early days of
SQL, it was a huge leap forward in usability and allowed technically proficient users and IT
professionals to access data without having to write programs in lower level languages.
With the advent of modern reporting and analytics tools, users no longer had to write any SQL
at all because the tools did that for them. They just had to have an understanding of the data
model. Which brings us back to the original data model problem. The EBR with search
changes this paradigm. Now, a business user can access their data without having to know
anything about SQL or about the underlying data model.

They only need to know how to use a text search tool. The EBR with Search enables the
concept of self-service, end-user data access.

With a modest investment to define the application’s key business objects as EBRs, and the
power of search enabled by SOLIXCloud, an organization can meet the end-user data access
requirements and keeps costs low to maximize the savings that can be harvested and be
returned to the IT budget for use on more strategic initiatives.

Solving the End User Challenge

The reluctance of application end users to allow their data to be moved to an archive should
not be a surprise. Every end user organization has their own mission and challenges and
asking them to take some of their valuable time to learn a new way to access data will need to
be justified. For many end users, the answer will be to either leave the application in place or
to replicate all of the screens and reports in the application before decommissioning it. As we
have seen, neither of these options are viable if we wish to harvest any cost savings.

The answer for many organizations is the adoption of self-service, end-user data access
powered by EBRs and search. As we have seen, one EBR representing a key business object in
the application can replace many screens and reports. Coupled with the project accelerators
provided by the Solix Application Retirement Factory team, which include out-of-the-box EBR
definitions for most enterprise class commercial applications, you have the start to a very
cost-effective solution to this challenge.

Solix CDP enables self-service, end-user data access through a workbench of tools for ad hoc
query, structured reports and text search. Role-based security enforces access control in
Solix CDP, meaning users can only retrieve data that they have been authorized to see. Once
an end-user retrieves their search result, the data can be easily loaded into Excel where the
user can slice and dice, sort, and format the data as they see fit. This capability makes it
possible for a single EBR to replace multiple SQL based reports and forms and more
importantly, eliminates the user from understanding the complexities behind the data.

Here is a simple search example from a decommissioned PeopleSoft application:

Based on our experience, EBRs address many of the use cases through self-service. However,
Solix CDP also provides the flexibility of other data access options including online forms,
fixed format reports, ad-hoc SQL reports, use of existing SQL code, and access to data using
other reporting and analytics tools.

For use cases where the data must be retrieved in real time and frequently, Solix CDP provides
a forms functionality to replicate an application inquiry screen. This might be useful for a
customer support team that needs to look up customer history or product warranty
information from the archive while the customer is on the phone.

For situations where a fixed format report is needed, Solix CDP provides a graphical report
writer. This can be useful when the same information needs to be retrieved frequently and
delivered in a fixed format to the requestor. A fixed format report might be useful for an
accounting team needing to provide an account reconciliation report to an outside auditor in
an Excel workbook. Or, an HR team might need to produce a timesheet report for an employee
or department and deliver the data in a PDF format. The CDP report writer would be an
appropriate tool for these use cases.

There may be situations where ad-hoc queries are required as well as searches, forms, or
reports. For this use case, Solix CDP provides the SQL Editor functionality. Typically used by
an IT professional, the SQL Editor allows for direct entry and execution of a SQL statement
(assuming the user has been granted access to the requested tables) as well as execution of
sql statements stored in text files. As previously noted, a best practice recommended by the
Solix Application Retirement Factory team is to preserve custom SQL report code in the
archive for future use. Not only can this code provide valuable insight into the data model, but
in many cases, it can be executed directly against the tables now stored in the archive. Solix
CDP uses an ANSI SQL compatible query engine, so the custom SQL code is likely usable as-is
and in rare cases it may need to be tweaked to work in this environment. If a large number of
custom reports existed for the custom application and it is possible to harvest the SQL code
from these reports, re-creating them using the SQL editor can be a very cost-effective way to
meet the end user data access requirements. These queries can also be saved for future
reuse.

The final data access functionality option available in Solix CDP is the CDP API. This API makes
it possible for end users to access data in the archive using other data reporting and analytics
tools. The CDP API uses a standards-based REST technology, making it compatible with most
modern tools.

Now, what is the best way to meet the end user resistance challenge? Solix recommends
minimizing the amount of effort spent up front building data access. The most common
mistake made by organizations is to assume that all of the reports that were needed when the
application was in production running the business will be needed after the application has
been decommissioned. All too often, organizations will build expensive reports up front and
find that they are rarely or never used. If it seems that this recommendation to minimize
reporting seems to be in direct conflict with the end-user resistance challenge, it absolutely
is. So, what is to be done? A balance must be struck between the end-user reporting demands
and the cost of the project (which will eat up potential cost savings).

That balance can usually be found with the combination of self-service end-user data access
powered by EBRs and search, and the use of saved custom sql reports run via the CDP SQL
Editor. No two organizations or applications are the same but using these techniques will
typically lead to an acceptable compromise between IT and their end users.

Putting it all together

A successful application decommissioning project must be delivered for a price that is less
than the potential cost savings. There are some exceptions to this rule such as the need to
bring legacy data into compliance with new data protection and privacy laws, or the urgent
need to move data off of an unstable and unsupported hardware platform. But, for most
projects, if the price of the project is greater than the potential savings, the project will not be
economically viable. The successful project must also solve the data problem and the end
user resistance problem within these constraints.

SOLIXCloud Application Retirement as-a-service can meet these challenges. SOLIXCloud can
solve the data problem with the help of data experts on the factory team and their library of
project accelerators. SOLIXCloud also solves end-user resistance problems with the use of
self-service end user data access powered by EBRs and search. Lastly, SOLIXCloud can
deliver your application decommissioning project for the lowest possible cost per application
yielding the greatest savings for your organization.

Let’s look back in on Ted and Sara who have just attended a demonstration of SOLIXCloud
Application Retirement as a Service.

“So, Sara, what do you think of the EBR concept?”

Sara answers “Does this mean I can search for my invoices, journals, and budgets and get the data
into a spreadsheet on my own?”

Ted replies “Absolutely”.

“And can I sort and format the data any way I want?”

“Absolutely” says Ted.

“And does this mean I won’t have to submit report requests to your team and wait two weeks to
get my data?” Sara asks.

 “Absolutely” says Ted.

“Then count me in, you have my support” says Sara.

“Great, that means, we will save a huge amount of money by decommissioning this application to
the Solix Cloud”, says Ted.

“Awesome” says Sara, “Here is my enhancement list for the new application. Please use those
savings to get these done. By the way, we need the enhancements done by next quarter.”

 And, so ends another chapter in the never-ending circle of application lifecycle.

7

The Data Challenge

Data contained in inactive applications may still have significant value to an organization. The
data may be needed to comply with industry or corporate policies or data protection and
privacy regulations. It may be needed for a variety of business reasons like customer support,
product and warranty support, or financial audits. Just discarding this data is not a viable
option for many applications.

To harvest the potential cost savings, the data from the inactive application must be moved
to a new home. Typically, this new home is some type of archive. The question about this
move is how to retain access to the application’s data once the application that created it is
gone. This challenge is especially difficult for data created by complex, enterprise-class
commercial applications (and it is no piece of cake for custom applications either). These
applications may have complex data models with tens of thousands of tables and hundreds
of thousands of columns (plus associated documents and attachments). How can anyone
possibly understand and use the data from a complex data model without the application?
This is the data model problem.

To further describe this problem, imagine an enterprise-class financial, manufacturing,
distribution, and support application with 50,000 tables and 1 million columns. Further,
imagine that this data model was not implemented with any primary or foreign key
relationships defined in the model itself (and that all of these relationships were defined in
the application code which is going away when the application is decommissioned). Also,
imagine that you do not have access to the application source code or technical
documentation to begin to understand this data model (or have no interest in trying to do so).
Lastly, imagine that this application data model was developed by programmers that loved
complexity and used obscure naming conventions for every table and column (as if to make
your job even more impossible). Unfortunately, this is the scenario for most major package
applications from SAP to Oracle E-Business Suite to PeopleSoft to Siebel to many others.

In the face of this data model problem, what is one to do? A variety of techniques have been
tried to varying degrees of success. Some will advocate the use of data modeling tools to
analyze the data model and represent it graphically in a way that makes it easier to
understand and access. Another technique that is sometimes employed is a code analyzer
(assuming access to source code is available). These analyzers can scan the code and
discover the hidden primary and foreign key relationships that define key objects in the
application. The most common technique is to reverse engineer key screens and reports in
the application to determine which tables are being used and how they are related (using log
analyzers to view the sql statements being executed by the database). Each of these
techniques requires skilled data analysts and archivists. As of the date of this writing, there is
no silver bullet technology that will solve the data model problem without applying a significant
amount of technical and application expertise.

There are few projects in IT easier to quantify cost savings and ROI than projects to
decommission inactive applications. Older applications pile up in the corner of the data
center as the organization modernizes their portfolio and as acquired companies are
transitioned onto the company standard applications. Costs for maintaining inactive
applications may include license and support fees for both software and hardware, data
center charges, labor costs for application maintenance and backups, and labor costs for
application support. The Applications Director for a large manufacturing company described
the process of finding savings for his application decommissioning project like this: “It was
as easy as walking through the data center and bending over to pick up hundred-dollar
bills”.

A study done by the Compliance, Governance, and Oversight Council (CGOC)1 showed that the
average annual cost savings for decommissioning inactive applications was $40,000 and that
for larger, enterprise class applications, the annual savings could exceed $120,000. With
typical application portfolios, large organizations may have hundreds of inactive applications
which could yield annual savings of millions of dollars if a cost-effective way to
decommission them could be found.

While measuring the potential cost savings for decommissioning inactive applications may
be easy, harvesting these savings can be more of a challenge. This challenge comes down to
two simple things:

1. the data contained in the inactive applications and
2. the application users that still depend on access to that data to perform their jobs.

An inactive application may contain valuable financial data needed by auditors or it may
contain important customer history data needed by the customer support team. Whatever
the use case may be, before harvesting the potential savings for decommissioning an
inactive application, a company will need to devise a strategy for dealing with this data and
the users that depend on it.

The data challenge (discussed below) will remain the same regardless of when the project to
decommission the application is started. The end-user challenge, however, will vary
significantly depending on this timing. The more time that has elapsed since the application
was inactivated, the fewer demands end-users will have for data access. Decommission an
application that was inactivated one week ago, and end users will demand nearly the same
level of data access that they had when the application was live. Decommission the same
application one year later, and the end-user demands for data access will have been reduced
significantly.

1 CGO “Information Lifecycle Governance Leader Reference Guide”

The End User Challenge

Ask any end-user of their preferred method of archiving data from their inactive, legacy
application and you will get the same answer: “No thank you, leave my data alone”.
Obviously, if you follow this advice, you will not be able to harvest the potential cost savings
from decommissioning this inactive application. The conviction of the end-users “No thank
you” will vary inversely to the length of time that the application has been inactive. That
means that to maximize the potential cost savings, you will have to deal with the most intense
end-user resistance. If you wait a few years until the application is forgotten and the intensity
of end-user resistance has faded, most of the potential savings will have evaporated. This
end-user resistance is a classic change management challenge that was discussed in Who
Moved My Cheese? 2. In our situation, we can describe this resistance as “Who moved my
data?”

Let’s look in on a typical scene being played out in a nearby conference room (or Zoom
meeting): Ted, the application director, has recently migrated the company’s financial and
procurement system from a legacy on-premise mainframe application to a modern,
cloud-based financial application. Ted wants to decommission the mainframe to avoid a
$200,000 maintenance renewal bill coming due at the end of quarter, but he knows that he
has to archive all of the accounts payable & receivables invoice data (and other financial
records). Sara is the accounting supervisor and the first stop on Ted’s end-user approval tour
for his decommissioning project.

“So, Sara, what kind of data access do you think you will need from the old financial records
when we retire the mainframe?”

Sara replies, “Well, we used one hundred different AP, AR, and GL reports, so I guess I will need
one hundred reports”.

Ted replies, “but Sara, you have a brand new, cloud-based application to run your department,
why do you need all these reports from the old mainframe data?”

Sara replies, “Ted, I’m really busy closing the books, get back to me when you get those
reports finished and we can talk…”

In the face of this end-user challenge, what is one to do? One option would be to give in to
Sara’s demands and re-create every single report from the legacy application to run inside
the archive. Another would be to ignore Sara and risk her wrath when the reports go away.
Neither of these options is viable. Remember, the reason for decommissioning the legacy
application was to harvest cost savings from doing so. If you spend all of these potential
savings recreating the application reports inside the archive, what have you accomplished?

Clearly, between the data challenge and the end-user challenge, there will be costs and effort
involved to decommission the inactive application and realize the possible saving
opportunities. The question is how to meet these challenges in the most cost-effective way to
maximize the potential savings?

2 Spencer Johnson, M.D., Who Moved My Cheese, G.P. Putnam’s Son’s, 1998

SOLIXCloud Application Retirement as-a-service

Solix has developed software, a repeatable process and methodology, and a set of factory
services specifically designed to solve the application decommissioning data challenge. The
SOLIXCloud Application Retirement as-a-service solution consists of three main parts:

1. Solix Common Data Platform (CDP) software-as-a-service in the Microsoft Azure
cloud (or private cloud);

2. The Solix Application Retirement Process and Methodology; and
3. Solix Application Retirement Factory Services.

Solving the Data Challenge

First, it is imperative to efficiently migrate data from the legacy application into the archive.
While this may sound simple, it can be quite complex when dealing with large,
enterprise-class applications. Solix CDP supports hundreds of legacy databases and sources
and can automate the process for migrating data. Once migrated, it is important to validate
that the data was moved completely and correctly. Again, Solix CDP automates this process
with extensive validation algorithms for every data type. The validation reports produced by
these algorithms are key to convincing end users and auditors that, when the time comes, it
will be safe to pull the plug on the legacy application.

The crux of the data challenge has to do with context. When the data resided within the
legacy application, the context was provided by that application. When the application is
removed, that context disappears, leaving the data to stand on its own.

Solix has developed steps in our approach and methodology to preserve as much context as
possible to give value back to this data. Many applications contain a data dictionary.
Solix CDP can import this data dictionary and add it to the archive repository. The information
in this dictionary, while relatively straight forward, can make a huge difference when trying to
understand the data model. Imagine a table name “RPXXQ.” Unless you were a developer
familiar with this application, it is highly unlikely that you could ever know what kind of data
was stored in this table. But, if we preserve the user-understandable name for the table
“Accounts Payable Invoices”, it would be a different story.

Another form of context that can add significant value to the data stored in the archive is
static report output. You may have paid millions of dollars for this application and it included
important reporting functionality used to run your business. Before decommissioning the
application, why not run key reports, save the output to PDF files, and archive these reports
alongside the data? Solix CDP provides a way to automate this whole process, called the
Virtual Printer (or you can just ingest previously created report files into the archive).
Someday soon, an auditor looking in the archive for the old financial reports will thank you.

One of the most important forms of technical context for legacy applications are custom
reports that you may have created over the years. These reports contain valuable query code
that can be extracted and saved to text files which can be archived along with the data.
Preserving these queries in the archive will go a long way towards meeting the end-user
challenge as well. By utilizing the Solix CDP SQL Editor, you can run these preserved queries
to recreate your custom reports inside the archive.

Because CDP supports both structured data and document data, it is easy to preserve these
documents in the archive which helps preserve the context for the structured data. There are
other documents that can be preserved, if they exist, which will add to this context including
reference manuals, technical documentation, procedure documents, operations documents,
training documents, screen shots, printed statements, printed forms, etc.. You may need to
keep data from your legacy applications for many years. The people accessing the archive
years from now will thank you for preserving all of these documents to help them better
understand the data.

As previously mentioned, there is no silver bullet technology to solve the data problem
without requiring technical and application expertise. That is why the Solix solution includes
a services component: The Solix Application Retirement Factory Service. This service
consists of a large group of data analysts, archivists, and developers that specialize in solving
the application decommissioning data challenge. The members on this factory team are
experts in the techniques previously described like data modeling, code analysis, query log
analysis, and reverse engineering. The team also consists of specialists for most of the
common, enterprise class applications currently being decommissioned. The benefit for
utilizing this factory team is that you don’t have to learn to solve the data problem on your
own. Let the Solix archiving experts help you through this hurdle.

One of the most important benefits of working with the Solix Application Retirement Factory
team is gaining access to their extensive library of project accelerators for specific
applications.

Over time, this team has decommissioned hundreds of different applications and has built up
a library of accelerators to speed up delivery of useful and compelling data access to end
users, while keeping costs to a minimum. These accelerators are available for many of the
major enterprise applications and consist of pre-defined business object models, reports,
and forms. More on business object models later. If you need to decommission one of these
applications, the data problem has already been solved for you by utilizing this factory
service.

Here is a small sample of the types of applications that have been retired by the factory team:

In our view, the key to solving the data problem in an application decommission project is to
understand the business object models used by the application. For example, in an accounts
receivable application, the key object model is the invoice. In a general ledger application, key
objects are journals and budgets. In a customer service application, a key object is the service
order. In most applications the number of objects is typically a fraction of the number of
reports / screens. If we can focus on defining these key objects rather than on replicating
reports, we can cut the work on the retirement project down to size.

How can this be accomplished? Solix CDP introduced the concept of the Enterprise Business
Record (EBR) to accomplish this goal. The EBR is a model of the entire business object
(including both structured and unstructured data) stored in a denormalized, flattened
structure. By itself, a model is just a model. What good is it? In CDP, the EBR comes to life
through the power of search. Since Dr. E.F. Codd invented the relational database, structured
query language (SQL) has been the lingua franca for database access. In the early days of
SQL, it was a huge leap forward in usability and allowed technically proficient users and IT
professionals to access data without having to write programs in lower level languages.
With the advent of modern reporting and analytics tools, users no longer had to write any SQL
at all because the tools did that for them. They just had to have an understanding of the data
model. Which brings us back to the original data model problem. The EBR with search
changes this paradigm. Now, a business user can access their data without having to know
anything about SQL or about the underlying data model.

They only need to know how to use a text search tool. The EBR with Search enables the
concept of self-service, end-user data access.

With a modest investment to define the application’s key business objects as EBRs, and the
power of search enabled by SOLIXCloud, an organization can meet the end-user data access
requirements and keeps costs low to maximize the savings that can be harvested and be
returned to the IT budget for use on more strategic initiatives.

Solving the End User Challenge

The reluctance of application end users to allow their data to be moved to an archive should
not be a surprise. Every end user organization has their own mission and challenges and
asking them to take some of their valuable time to learn a new way to access data will need to
be justified. For many end users, the answer will be to either leave the application in place or
to replicate all of the screens and reports in the application before decommissioning it. As we
have seen, neither of these options are viable if we wish to harvest any cost savings.

The answer for many organizations is the adoption of self-service, end-user data access
powered by EBRs and search. As we have seen, one EBR representing a key business object in
the application can replace many screens and reports. Coupled with the project accelerators
provided by the Solix Application Retirement Factory team, which include out-of-the-box EBR
definitions for most enterprise class commercial applications, you have the start to a very
cost-effective solution to this challenge.

Solix CDP enables self-service, end-user data access through a workbench of tools for ad hoc
query, structured reports and text search. Role-based security enforces access control in
Solix CDP, meaning users can only retrieve data that they have been authorized to see. Once
an end-user retrieves their search result, the data can be easily loaded into Excel where the
user can slice and dice, sort, and format the data as they see fit. This capability makes it
possible for a single EBR to replace multiple SQL based reports and forms and more
importantly, eliminates the user from understanding the complexities behind the data.

Here is a simple search example from a decommissioned PeopleSoft application:

Based on our experience, EBRs address many of the use cases through self-service. However,
Solix CDP also provides the flexibility of other data access options including online forms,
fixed format reports, ad-hoc SQL reports, use of existing SQL code, and access to data using
other reporting and analytics tools.

For use cases where the data must be retrieved in real time and frequently, Solix CDP provides
a forms functionality to replicate an application inquiry screen. This might be useful for a
customer support team that needs to look up customer history or product warranty
information from the archive while the customer is on the phone.

For situations where a fixed format report is needed, Solix CDP provides a graphical report
writer. This can be useful when the same information needs to be retrieved frequently and
delivered in a fixed format to the requestor. A fixed format report might be useful for an
accounting team needing to provide an account reconciliation report to an outside auditor in
an Excel workbook. Or, an HR team might need to produce a timesheet report for an employee
or department and deliver the data in a PDF format. The CDP report writer would be an
appropriate tool for these use cases.

There may be situations where ad-hoc queries are required as well as searches, forms, or
reports. For this use case, Solix CDP provides the SQL Editor functionality. Typically used by
an IT professional, the SQL Editor allows for direct entry and execution of a SQL statement
(assuming the user has been granted access to the requested tables) as well as execution of
sql statements stored in text files. As previously noted, a best practice recommended by the
Solix Application Retirement Factory team is to preserve custom SQL report code in the
archive for future use. Not only can this code provide valuable insight into the data model, but
in many cases, it can be executed directly against the tables now stored in the archive. Solix
CDP uses an ANSI SQL compatible query engine, so the custom SQL code is likely usable as-is
and in rare cases it may need to be tweaked to work in this environment. If a large number of
custom reports existed for the custom application and it is possible to harvest the SQL code
from these reports, re-creating them using the SQL editor can be a very cost-effective way to
meet the end user data access requirements. These queries can also be saved for future
reuse.

The final data access functionality option available in Solix CDP is the CDP API. This API makes
it possible for end users to access data in the archive using other data reporting and analytics
tools. The CDP API uses a standards-based REST technology, making it compatible with most
modern tools.

Now, what is the best way to meet the end user resistance challenge? Solix recommends
minimizing the amount of effort spent up front building data access. The most common
mistake made by organizations is to assume that all of the reports that were needed when the
application was in production running the business will be needed after the application has
been decommissioned. All too often, organizations will build expensive reports up front and
find that they are rarely or never used. If it seems that this recommendation to minimize
reporting seems to be in direct conflict with the end-user resistance challenge, it absolutely
is. So, what is to be done? A balance must be struck between the end-user reporting demands
and the cost of the project (which will eat up potential cost savings).

That balance can usually be found with the combination of self-service end-user data access
powered by EBRs and search, and the use of saved custom sql reports run via the CDP SQL
Editor. No two organizations or applications are the same but using these techniques will
typically lead to an acceptable compromise between IT and their end users.

Putting it all together

A successful application decommissioning project must be delivered for a price that is less
than the potential cost savings. There are some exceptions to this rule such as the need to
bring legacy data into compliance with new data protection and privacy laws, or the urgent
need to move data off of an unstable and unsupported hardware platform. But, for most
projects, if the price of the project is greater than the potential savings, the project will not be
economically viable. The successful project must also solve the data problem and the end
user resistance problem within these constraints.

SOLIXCloud Application Retirement as-a-service can meet these challenges. SOLIXCloud can
solve the data problem with the help of data experts on the factory team and their library of
project accelerators. SOLIXCloud also solves end-user resistance problems with the use of
self-service end user data access powered by EBRs and search. Lastly, SOLIXCloud can
deliver your application decommissioning project for the lowest possible cost per application
yielding the greatest savings for your organization.

Let’s look back in on Ted and Sara who have just attended a demonstration of SOLIXCloud
Application Retirement as a Service.

“So, Sara, what do you think of the EBR concept?”

Sara answers “Does this mean I can search for my invoices, journals, and budgets and get the data
into a spreadsheet on my own?”

Ted replies “Absolutely”.

“And can I sort and format the data any way I want?”

“Absolutely” says Ted.

“And does this mean I won’t have to submit report requests to your team and wait two weeks to
get my data?” Sara asks.

 “Absolutely” says Ted.

“Then count me in, you have my support” says Sara.

“Great, that means, we will save a huge amount of money by decommissioning this application to
the Solix Cloud”, says Ted.

“Awesome” says Sara, “Here is my enhancement list for the new application. Please use those
savings to get these done. By the way, we need the enhancements done by next quarter.”

 And, so ends another chapter in the never-ending circle of application lifecycle.

8

The Data Challenge

Data contained in inactive applications may still have significant value to an organization. The
data may be needed to comply with industry or corporate policies or data protection and
privacy regulations. It may be needed for a variety of business reasons like customer support,
product and warranty support, or financial audits. Just discarding this data is not a viable
option for many applications.

To harvest the potential cost savings, the data from the inactive application must be moved
to a new home. Typically, this new home is some type of archive. The question about this
move is how to retain access to the application’s data once the application that created it is
gone. This challenge is especially difficult for data created by complex, enterprise-class
commercial applications (and it is no piece of cake for custom applications either). These
applications may have complex data models with tens of thousands of tables and hundreds
of thousands of columns (plus associated documents and attachments). How can anyone
possibly understand and use the data from a complex data model without the application?
This is the data model problem.

To further describe this problem, imagine an enterprise-class financial, manufacturing,
distribution, and support application with 50,000 tables and 1 million columns. Further,
imagine that this data model was not implemented with any primary or foreign key
relationships defined in the model itself (and that all of these relationships were defined in
the application code which is going away when the application is decommissioned). Also,
imagine that you do not have access to the application source code or technical
documentation to begin to understand this data model (or have no interest in trying to do so).
Lastly, imagine that this application data model was developed by programmers that loved
complexity and used obscure naming conventions for every table and column (as if to make
your job even more impossible). Unfortunately, this is the scenario for most major package
applications from SAP to Oracle E-Business Suite to PeopleSoft to Siebel to many others.

In the face of this data model problem, what is one to do? A variety of techniques have been
tried to varying degrees of success. Some will advocate the use of data modeling tools to
analyze the data model and represent it graphically in a way that makes it easier to
understand and access. Another technique that is sometimes employed is a code analyzer
(assuming access to source code is available). These analyzers can scan the code and
discover the hidden primary and foreign key relationships that define key objects in the
application. The most common technique is to reverse engineer key screens and reports in
the application to determine which tables are being used and how they are related (using log
analyzers to view the sql statements being executed by the database). Each of these
techniques requires skilled data analysts and archivists. As of the date of this writing, there is
no silver bullet technology that will solve the data model problem without applying a significant
amount of technical and application expertise.

There are few projects in IT easier to quantify cost savings and ROI than projects to
decommission inactive applications. Older applications pile up in the corner of the data
center as the organization modernizes their portfolio and as acquired companies are
transitioned onto the company standard applications. Costs for maintaining inactive
applications may include license and support fees for both software and hardware, data
center charges, labor costs for application maintenance and backups, and labor costs for
application support. The Applications Director for a large manufacturing company described
the process of finding savings for his application decommissioning project like this: “It was
as easy as walking through the data center and bending over to pick up hundred-dollar
bills”.

A study done by the Compliance, Governance, and Oversight Council (CGOC)1 showed that the
average annual cost savings for decommissioning inactive applications was $40,000 and that
for larger, enterprise class applications, the annual savings could exceed $120,000. With
typical application portfolios, large organizations may have hundreds of inactive applications
which could yield annual savings of millions of dollars if a cost-effective way to
decommission them could be found.

While measuring the potential cost savings for decommissioning inactive applications may
be easy, harvesting these savings can be more of a challenge. This challenge comes down to
two simple things:

1. the data contained in the inactive applications and
2. the application users that still depend on access to that data to perform their jobs.

An inactive application may contain valuable financial data needed by auditors or it may
contain important customer history data needed by the customer support team. Whatever
the use case may be, before harvesting the potential savings for decommissioning an
inactive application, a company will need to devise a strategy for dealing with this data and
the users that depend on it.

The data challenge (discussed below) will remain the same regardless of when the project to
decommission the application is started. The end-user challenge, however, will vary
significantly depending on this timing. The more time that has elapsed since the application
was inactivated, the fewer demands end-users will have for data access. Decommission an
application that was inactivated one week ago, and end users will demand nearly the same
level of data access that they had when the application was live. Decommission the same
application one year later, and the end-user demands for data access will have been reduced
significantly.

1 CGO “Information Lifecycle Governance Leader Reference Guide”

The End User Challenge

Ask any end-user of their preferred method of archiving data from their inactive, legacy
application and you will get the same answer: “No thank you, leave my data alone”.
Obviously, if you follow this advice, you will not be able to harvest the potential cost savings
from decommissioning this inactive application. The conviction of the end-users “No thank
you” will vary inversely to the length of time that the application has been inactive. That
means that to maximize the potential cost savings, you will have to deal with the most intense
end-user resistance. If you wait a few years until the application is forgotten and the intensity
of end-user resistance has faded, most of the potential savings will have evaporated. This
end-user resistance is a classic change management challenge that was discussed in Who
Moved My Cheese? 2. In our situation, we can describe this resistance as “Who moved my
data?”

Let’s look in on a typical scene being played out in a nearby conference room (or Zoom
meeting): Ted, the application director, has recently migrated the company’s financial and
procurement system from a legacy on-premise mainframe application to a modern,
cloud-based financial application. Ted wants to decommission the mainframe to avoid a
$200,000 maintenance renewal bill coming due at the end of quarter, but he knows that he
has to archive all of the accounts payable & receivables invoice data (and other financial
records). Sara is the accounting supervisor and the first stop on Ted’s end-user approval tour
for his decommissioning project.

“So, Sara, what kind of data access do you think you will need from the old financial records
when we retire the mainframe?”

Sara replies, “Well, we used one hundred different AP, AR, and GL reports, so I guess I will need
one hundred reports”.

Ted replies, “but Sara, you have a brand new, cloud-based application to run your department,
why do you need all these reports from the old mainframe data?”

Sara replies, “Ted, I’m really busy closing the books, get back to me when you get those
reports finished and we can talk…”

In the face of this end-user challenge, what is one to do? One option would be to give in to
Sara’s demands and re-create every single report from the legacy application to run inside
the archive. Another would be to ignore Sara and risk her wrath when the reports go away.
Neither of these options is viable. Remember, the reason for decommissioning the legacy
application was to harvest cost savings from doing so. If you spend all of these potential
savings recreating the application reports inside the archive, what have you accomplished?

Clearly, between the data challenge and the end-user challenge, there will be costs and effort
involved to decommission the inactive application and realize the possible saving
opportunities. The question is how to meet these challenges in the most cost-effective way to
maximize the potential savings?

2 Spencer Johnson, M.D., Who Moved My Cheese, G.P. Putnam’s Son’s, 1998

SOLIXCloud Application Retirement as-a-service

Solix has developed software, a repeatable process and methodology, and a set of factory
services specifically designed to solve the application decommissioning data challenge. The
SOLIXCloud Application Retirement as-a-service solution consists of three main parts:

1. Solix Common Data Platform (CDP) software-as-a-service in the Microsoft Azure
cloud (or private cloud);

2. The Solix Application Retirement Process and Methodology; and
3. Solix Application Retirement Factory Services.

Solving the Data Challenge

First, it is imperative to efficiently migrate data from the legacy application into the archive.
While this may sound simple, it can be quite complex when dealing with large,
enterprise-class applications. Solix CDP supports hundreds of legacy databases and sources
and can automate the process for migrating data. Once migrated, it is important to validate
that the data was moved completely and correctly. Again, Solix CDP automates this process
with extensive validation algorithms for every data type. The validation reports produced by
these algorithms are key to convincing end users and auditors that, when the time comes, it
will be safe to pull the plug on the legacy application.

The crux of the data challenge has to do with context. When the data resided within the
legacy application, the context was provided by that application. When the application is
removed, that context disappears, leaving the data to stand on its own.

Solix has developed steps in our approach and methodology to preserve as much context as
possible to give value back to this data. Many applications contain a data dictionary.
Solix CDP can import this data dictionary and add it to the archive repository. The information
in this dictionary, while relatively straight forward, can make a huge difference when trying to
understand the data model. Imagine a table name “RPXXQ.” Unless you were a developer
familiar with this application, it is highly unlikely that you could ever know what kind of data
was stored in this table. But, if we preserve the user-understandable name for the table
“Accounts Payable Invoices”, it would be a different story.

Another form of context that can add significant value to the data stored in the archive is
static report output. You may have paid millions of dollars for this application and it included
important reporting functionality used to run your business. Before decommissioning the
application, why not run key reports, save the output to PDF files, and archive these reports
alongside the data? Solix CDP provides a way to automate this whole process, called the
Virtual Printer (or you can just ingest previously created report files into the archive).
Someday soon, an auditor looking in the archive for the old financial reports will thank you.

One of the most important forms of technical context for legacy applications are custom
reports that you may have created over the years. These reports contain valuable query code
that can be extracted and saved to text files which can be archived along with the data.
Preserving these queries in the archive will go a long way towards meeting the end-user
challenge as well. By utilizing the Solix CDP SQL Editor, you can run these preserved queries
to recreate your custom reports inside the archive.

Because CDP supports both structured data and document data, it is easy to preserve these
documents in the archive which helps preserve the context for the structured data. There are
other documents that can be preserved, if they exist, which will add to this context including
reference manuals, technical documentation, procedure documents, operations documents,
training documents, screen shots, printed statements, printed forms, etc.. You may need to
keep data from your legacy applications for many years. The people accessing the archive
years from now will thank you for preserving all of these documents to help them better
understand the data.

As previously mentioned, there is no silver bullet technology to solve the data problem
without requiring technical and application expertise. That is why the Solix solution includes
a services component: The Solix Application Retirement Factory Service. This service
consists of a large group of data analysts, archivists, and developers that specialize in solving
the application decommissioning data challenge. The members on this factory team are
experts in the techniques previously described like data modeling, code analysis, query log
analysis, and reverse engineering. The team also consists of specialists for most of the
common, enterprise class applications currently being decommissioned. The benefit for
utilizing this factory team is that you don’t have to learn to solve the data problem on your
own. Let the Solix archiving experts help you through this hurdle.

One of the most important benefits of working with the Solix Application Retirement Factory
team is gaining access to their extensive library of project accelerators for specific
applications.

Over time, this team has decommissioned hundreds of different applications and has built up
a library of accelerators to speed up delivery of useful and compelling data access to end
users, while keeping costs to a minimum. These accelerators are available for many of the
major enterprise applications and consist of pre-defined business object models, reports,
and forms. More on business object models later. If you need to decommission one of these
applications, the data problem has already been solved for you by utilizing this factory
service.

Here is a small sample of the types of applications that have been retired by the factory team:

In our view, the key to solving the data problem in an application decommission project is to
understand the business object models used by the application. For example, in an accounts
receivable application, the key object model is the invoice. In a general ledger application, key
objects are journals and budgets. In a customer service application, a key object is the service
order. In most applications the number of objects is typically a fraction of the number of
reports / screens. If we can focus on defining these key objects rather than on replicating
reports, we can cut the work on the retirement project down to size.

How can this be accomplished? Solix CDP introduced the concept of the Enterprise Business
Record (EBR) to accomplish this goal. The EBR is a model of the entire business object
(including both structured and unstructured data) stored in a denormalized, flattened
structure. By itself, a model is just a model. What good is it? In CDP, the EBR comes to life
through the power of search. Since Dr. E.F. Codd invented the relational database, structured
query language (SQL) has been the lingua franca for database access. In the early days of
SQL, it was a huge leap forward in usability and allowed technically proficient users and IT
professionals to access data without having to write programs in lower level languages.
With the advent of modern reporting and analytics tools, users no longer had to write any SQL
at all because the tools did that for them. They just had to have an understanding of the data
model. Which brings us back to the original data model problem. The EBR with search
changes this paradigm. Now, a business user can access their data without having to know
anything about SQL or about the underlying data model.

They only need to know how to use a text search tool. The EBR with Search enables the
concept of self-service, end-user data access.

With a modest investment to define the application’s key business objects as EBRs, and the
power of search enabled by SOLIXCloud, an organization can meet the end-user data access
requirements and keeps costs low to maximize the savings that can be harvested and be
returned to the IT budget for use on more strategic initiatives.

Solving the End User Challenge

The reluctance of application end users to allow their data to be moved to an archive should
not be a surprise. Every end user organization has their own mission and challenges and
asking them to take some of their valuable time to learn a new way to access data will need to
be justified. For many end users, the answer will be to either leave the application in place or
to replicate all of the screens and reports in the application before decommissioning it. As we
have seen, neither of these options are viable if we wish to harvest any cost savings.

The answer for many organizations is the adoption of self-service, end-user data access
powered by EBRs and search. As we have seen, one EBR representing a key business object in
the application can replace many screens and reports. Coupled with the project accelerators
provided by the Solix Application Retirement Factory team, which include out-of-the-box EBR
definitions for most enterprise class commercial applications, you have the start to a very
cost-effective solution to this challenge.

Solix CDP enables self-service, end-user data access through a workbench of tools for ad hoc
query, structured reports and text search. Role-based security enforces access control in
Solix CDP, meaning users can only retrieve data that they have been authorized to see. Once
an end-user retrieves their search result, the data can be easily loaded into Excel where the
user can slice and dice, sort, and format the data as they see fit. This capability makes it
possible for a single EBR to replace multiple SQL based reports and forms and more
importantly, eliminates the user from understanding the complexities behind the data.

Here is a simple search example from a decommissioned PeopleSoft application:

Based on our experience, EBRs address many of the use cases through self-service. However,
Solix CDP also provides the flexibility of other data access options including online forms,
fixed format reports, ad-hoc SQL reports, use of existing SQL code, and access to data using
other reporting and analytics tools.

For use cases where the data must be retrieved in real time and frequently, Solix CDP provides
a forms functionality to replicate an application inquiry screen. This might be useful for a
customer support team that needs to look up customer history or product warranty
information from the archive while the customer is on the phone.

For situations where a fixed format report is needed, Solix CDP provides a graphical report
writer. This can be useful when the same information needs to be retrieved frequently and
delivered in a fixed format to the requestor. A fixed format report might be useful for an
accounting team needing to provide an account reconciliation report to an outside auditor in
an Excel workbook. Or, an HR team might need to produce a timesheet report for an employee
or department and deliver the data in a PDF format. The CDP report writer would be an
appropriate tool for these use cases.

There may be situations where ad-hoc queries are required as well as searches, forms, or
reports. For this use case, Solix CDP provides the SQL Editor functionality. Typically used by
an IT professional, the SQL Editor allows for direct entry and execution of a SQL statement
(assuming the user has been granted access to the requested tables) as well as execution of
sql statements stored in text files. As previously noted, a best practice recommended by the
Solix Application Retirement Factory team is to preserve custom SQL report code in the
archive for future use. Not only can this code provide valuable insight into the data model, but
in many cases, it can be executed directly against the tables now stored in the archive. Solix
CDP uses an ANSI SQL compatible query engine, so the custom SQL code is likely usable as-is
and in rare cases it may need to be tweaked to work in this environment. If a large number of
custom reports existed for the custom application and it is possible to harvest the SQL code
from these reports, re-creating them using the SQL editor can be a very cost-effective way to
meet the end user data access requirements. These queries can also be saved for future
reuse.

The final data access functionality option available in Solix CDP is the CDP API. This API makes
it possible for end users to access data in the archive using other data reporting and analytics
tools. The CDP API uses a standards-based REST technology, making it compatible with most
modern tools.

Now, what is the best way to meet the end user resistance challenge? Solix recommends
minimizing the amount of effort spent up front building data access. The most common
mistake made by organizations is to assume that all of the reports that were needed when the
application was in production running the business will be needed after the application has
been decommissioned. All too often, organizations will build expensive reports up front and
find that they are rarely or never used. If it seems that this recommendation to minimize
reporting seems to be in direct conflict with the end-user resistance challenge, it absolutely
is. So, what is to be done? A balance must be struck between the end-user reporting demands
and the cost of the project (which will eat up potential cost savings).

That balance can usually be found with the combination of self-service end-user data access
powered by EBRs and search, and the use of saved custom sql reports run via the CDP SQL
Editor. No two organizations or applications are the same but using these techniques will
typically lead to an acceptable compromise between IT and their end users.

Putting it all together

A successful application decommissioning project must be delivered for a price that is less
than the potential cost savings. There are some exceptions to this rule such as the need to
bring legacy data into compliance with new data protection and privacy laws, or the urgent
need to move data off of an unstable and unsupported hardware platform. But, for most
projects, if the price of the project is greater than the potential savings, the project will not be
economically viable. The successful project must also solve the data problem and the end
user resistance problem within these constraints.

SOLIXCloud Application Retirement as-a-service can meet these challenges. SOLIXCloud can
solve the data problem with the help of data experts on the factory team and their library of
project accelerators. SOLIXCloud also solves end-user resistance problems with the use of
self-service end user data access powered by EBRs and search. Lastly, SOLIXCloud can
deliver your application decommissioning project for the lowest possible cost per application
yielding the greatest savings for your organization.

Let’s look back in on Ted and Sara who have just attended a demonstration of SOLIXCloud
Application Retirement as a Service.

“So, Sara, what do you think of the EBR concept?”

Sara answers “Does this mean I can search for my invoices, journals, and budgets and get the data
into a spreadsheet on my own?”

Ted replies “Absolutely”.

“And can I sort and format the data any way I want?”

“Absolutely” says Ted.

“And does this mean I won’t have to submit report requests to your team and wait two weeks to
get my data?” Sara asks.

 “Absolutely” says Ted.

“Then count me in, you have my support” says Sara.

“Great, that means, we will save a huge amount of money by decommissioning this application to
the Solix Cloud”, says Ted.

“Awesome” says Sara, “Here is my enhancement list for the new application. Please use those
savings to get these done. By the way, we need the enhancements done by next quarter.”

 And, so ends another chapter in the never-ending circle of application lifecycle.

9

The Data Challenge

Data contained in inactive applications may still have significant value to an organization. The
data may be needed to comply with industry or corporate policies or data protection and
privacy regulations. It may be needed for a variety of business reasons like customer support,
product and warranty support, or financial audits. Just discarding this data is not a viable
option for many applications.

To harvest the potential cost savings, the data from the inactive application must be moved
to a new home. Typically, this new home is some type of archive. The question about this
move is how to retain access to the application’s data once the application that created it is
gone. This challenge is especially difficult for data created by complex, enterprise-class
commercial applications (and it is no piece of cake for custom applications either). These
applications may have complex data models with tens of thousands of tables and hundreds
of thousands of columns (plus associated documents and attachments). How can anyone
possibly understand and use the data from a complex data model without the application?
This is the data model problem.

To further describe this problem, imagine an enterprise-class financial, manufacturing,
distribution, and support application with 50,000 tables and 1 million columns. Further,
imagine that this data model was not implemented with any primary or foreign key
relationships defined in the model itself (and that all of these relationships were defined in
the application code which is going away when the application is decommissioned). Also,
imagine that you do not have access to the application source code or technical
documentation to begin to understand this data model (or have no interest in trying to do so).
Lastly, imagine that this application data model was developed by programmers that loved
complexity and used obscure naming conventions for every table and column (as if to make
your job even more impossible). Unfortunately, this is the scenario for most major package
applications from SAP to Oracle E-Business Suite to PeopleSoft to Siebel to many others.

In the face of this data model problem, what is one to do? A variety of techniques have been
tried to varying degrees of success. Some will advocate the use of data modeling tools to
analyze the data model and represent it graphically in a way that makes it easier to
understand and access. Another technique that is sometimes employed is a code analyzer
(assuming access to source code is available). These analyzers can scan the code and
discover the hidden primary and foreign key relationships that define key objects in the
application. The most common technique is to reverse engineer key screens and reports in
the application to determine which tables are being used and how they are related (using log
analyzers to view the sql statements being executed by the database). Each of these
techniques requires skilled data analysts and archivists. As of the date of this writing, there is
no silver bullet technology that will solve the data model problem without applying a significant
amount of technical and application expertise.

There are few projects in IT easier to quantify cost savings and ROI than projects to
decommission inactive applications. Older applications pile up in the corner of the data
center as the organization modernizes their portfolio and as acquired companies are
transitioned onto the company standard applications. Costs for maintaining inactive
applications may include license and support fees for both software and hardware, data
center charges, labor costs for application maintenance and backups, and labor costs for
application support. The Applications Director for a large manufacturing company described
the process of finding savings for his application decommissioning project like this: “It was
as easy as walking through the data center and bending over to pick up hundred-dollar
bills”.

A study done by the Compliance, Governance, and Oversight Council (CGOC)1 showed that the
average annual cost savings for decommissioning inactive applications was $40,000 and that
for larger, enterprise class applications, the annual savings could exceed $120,000. With
typical application portfolios, large organizations may have hundreds of inactive applications
which could yield annual savings of millions of dollars if a cost-effective way to
decommission them could be found.

While measuring the potential cost savings for decommissioning inactive applications may
be easy, harvesting these savings can be more of a challenge. This challenge comes down to
two simple things:

1. the data contained in the inactive applications and
2. the application users that still depend on access to that data to perform their jobs.

An inactive application may contain valuable financial data needed by auditors or it may
contain important customer history data needed by the customer support team. Whatever
the use case may be, before harvesting the potential savings for decommissioning an
inactive application, a company will need to devise a strategy for dealing with this data and
the users that depend on it.

The data challenge (discussed below) will remain the same regardless of when the project to
decommission the application is started. The end-user challenge, however, will vary
significantly depending on this timing. The more time that has elapsed since the application
was inactivated, the fewer demands end-users will have for data access. Decommission an
application that was inactivated one week ago, and end users will demand nearly the same
level of data access that they had when the application was live. Decommission the same
application one year later, and the end-user demands for data access will have been reduced
significantly.

1 CGO “Information Lifecycle Governance Leader Reference Guide”

The End User Challenge

Ask any end-user of their preferred method of archiving data from their inactive, legacy
application and you will get the same answer: “No thank you, leave my data alone”.
Obviously, if you follow this advice, you will not be able to harvest the potential cost savings
from decommissioning this inactive application. The conviction of the end-users “No thank
you” will vary inversely to the length of time that the application has been inactive. That
means that to maximize the potential cost savings, you will have to deal with the most intense
end-user resistance. If you wait a few years until the application is forgotten and the intensity
of end-user resistance has faded, most of the potential savings will have evaporated. This
end-user resistance is a classic change management challenge that was discussed in Who
Moved My Cheese? 2. In our situation, we can describe this resistance as “Who moved my
data?”

Let’s look in on a typical scene being played out in a nearby conference room (or Zoom
meeting): Ted, the application director, has recently migrated the company’s financial and
procurement system from a legacy on-premise mainframe application to a modern,
cloud-based financial application. Ted wants to decommission the mainframe to avoid a
$200,000 maintenance renewal bill coming due at the end of quarter, but he knows that he
has to archive all of the accounts payable & receivables invoice data (and other financial
records). Sara is the accounting supervisor and the first stop on Ted’s end-user approval tour
for his decommissioning project.

“So, Sara, what kind of data access do you think you will need from the old financial records
when we retire the mainframe?”

Sara replies, “Well, we used one hundred different AP, AR, and GL reports, so I guess I will need
one hundred reports”.

Ted replies, “but Sara, you have a brand new, cloud-based application to run your department,
why do you need all these reports from the old mainframe data?”

Sara replies, “Ted, I’m really busy closing the books, get back to me when you get those
reports finished and we can talk…”

In the face of this end-user challenge, what is one to do? One option would be to give in to
Sara’s demands and re-create every single report from the legacy application to run inside
the archive. Another would be to ignore Sara and risk her wrath when the reports go away.
Neither of these options is viable. Remember, the reason for decommissioning the legacy
application was to harvest cost savings from doing so. If you spend all of these potential
savings recreating the application reports inside the archive, what have you accomplished?

Clearly, between the data challenge and the end-user challenge, there will be costs and effort
involved to decommission the inactive application and realize the possible saving
opportunities. The question is how to meet these challenges in the most cost-effective way to
maximize the potential savings?

2 Spencer Johnson, M.D., Who Moved My Cheese, G.P. Putnam’s Son’s, 1998

SOLIXCloud Application Retirement as-a-service

Solix has developed software, a repeatable process and methodology, and a set of factory
services specifically designed to solve the application decommissioning data challenge. The
SOLIXCloud Application Retirement as-a-service solution consists of three main parts:

1. Solix Common Data Platform (CDP) software-as-a-service in the Microsoft Azure
cloud (or private cloud);

2. The Solix Application Retirement Process and Methodology; and
3. Solix Application Retirement Factory Services.

Solving the Data Challenge

First, it is imperative to efficiently migrate data from the legacy application into the archive.
While this may sound simple, it can be quite complex when dealing with large,
enterprise-class applications. Solix CDP supports hundreds of legacy databases and sources
and can automate the process for migrating data. Once migrated, it is important to validate
that the data was moved completely and correctly. Again, Solix CDP automates this process
with extensive validation algorithms for every data type. The validation reports produced by
these algorithms are key to convincing end users and auditors that, when the time comes, it
will be safe to pull the plug on the legacy application.

The crux of the data challenge has to do with context. When the data resided within the
legacy application, the context was provided by that application. When the application is
removed, that context disappears, leaving the data to stand on its own.

Contact Us

For more information contact us at:

Solix Technologies, Inc.
4701 Patrick Henry Dr., Bldg 20
Santa Clara, CA 95054

Toll Free: +1.888.GO.SOLIX (+1.888.467.6549)
Telephone: +1.408.654.6400
Fax: +1.408.562.0048
Email: info@solix.com
URL: http://www.solix.com

Copyright © 2023, Solix Technologies and/or its affiliates. All rights reserved.

Solix Technologies, Inc. is a leading cloud data management application solution provider that
empowers data-driven enterprises with solutions for digital transformation including Enterprise
Archiving, Enterprise Data Lake, Consumer Data Privacy and Enterprise Content Services. SOLIX-
Cloud Common Data Platform provides an Information Lifecycle Management (ILM) framework to
provide compliance and data governance for both current and historical data. Solix Technologies,
Inc. is headquartered in Santa Clara, California and operates worldwide through direct sales and
an established network of value added resellers (VARs) and systems integrators.

Solix has developed steps in our approach and methodology to preserve as much context as
possible to give value back to this data. Many applications contain a data dictionary.
Solix CDP can import this data dictionary and add it to the archive repository. The information
in this dictionary, while relatively straight forward, can make a huge difference when trying to
understand the data model. Imagine a table name “RPXXQ.” Unless you were a developer
familiar with this application, it is highly unlikely that you could ever know what kind of data
was stored in this table. But, if we preserve the user-understandable name for the table
“Accounts Payable Invoices”, it would be a different story.

Another form of context that can add significant value to the data stored in the archive is
static report output. You may have paid millions of dollars for this application and it included
important reporting functionality used to run your business. Before decommissioning the
application, why not run key reports, save the output to PDF files, and archive these reports
alongside the data? Solix CDP provides a way to automate this whole process, called the
Virtual Printer (or you can just ingest previously created report files into the archive).
Someday soon, an auditor looking in the archive for the old financial reports will thank you.

One of the most important forms of technical context for legacy applications are custom
reports that you may have created over the years. These reports contain valuable query code
that can be extracted and saved to text files which can be archived along with the data.
Preserving these queries in the archive will go a long way towards meeting the end-user
challenge as well. By utilizing the Solix CDP SQL Editor, you can run these preserved queries
to recreate your custom reports inside the archive.

Because CDP supports both structured data and document data, it is easy to preserve these
documents in the archive which helps preserve the context for the structured data. There are
other documents that can be preserved, if they exist, which will add to this context including
reference manuals, technical documentation, procedure documents, operations documents,
training documents, screen shots, printed statements, printed forms, etc.. You may need to
keep data from your legacy applications for many years. The people accessing the archive
years from now will thank you for preserving all of these documents to help them better
understand the data.

As previously mentioned, there is no silver bullet technology to solve the data problem
without requiring technical and application expertise. That is why the Solix solution includes
a services component: The Solix Application Retirement Factory Service. This service
consists of a large group of data analysts, archivists, and developers that specialize in solving
the application decommissioning data challenge. The members on this factory team are
experts in the techniques previously described like data modeling, code analysis, query log
analysis, and reverse engineering. The team also consists of specialists for most of the
common, enterprise class applications currently being decommissioned. The benefit for
utilizing this factory team is that you don’t have to learn to solve the data problem on your
own. Let the Solix archiving experts help you through this hurdle.

One of the most important benefits of working with the Solix Application Retirement Factory
team is gaining access to their extensive library of project accelerators for specific
applications.

Over time, this team has decommissioned hundreds of different applications and has built up
a library of accelerators to speed up delivery of useful and compelling data access to end
users, while keeping costs to a minimum. These accelerators are available for many of the
major enterprise applications and consist of pre-defined business object models, reports,
and forms. More on business object models later. If you need to decommission one of these
applications, the data problem has already been solved for you by utilizing this factory
service.

Here is a small sample of the types of applications that have been retired by the factory team:

In our view, the key to solving the data problem in an application decommission project is to
understand the business object models used by the application. For example, in an accounts
receivable application, the key object model is the invoice. In a general ledger application, key
objects are journals and budgets. In a customer service application, a key object is the service
order. In most applications the number of objects is typically a fraction of the number of
reports / screens. If we can focus on defining these key objects rather than on replicating
reports, we can cut the work on the retirement project down to size.

How can this be accomplished? Solix CDP introduced the concept of the Enterprise Business
Record (EBR) to accomplish this goal. The EBR is a model of the entire business object
(including both structured and unstructured data) stored in a denormalized, flattened
structure. By itself, a model is just a model. What good is it? In CDP, the EBR comes to life
through the power of search. Since Dr. E.F. Codd invented the relational database, structured
query language (SQL) has been the lingua franca for database access. In the early days of
SQL, it was a huge leap forward in usability and allowed technically proficient users and IT
professionals to access data without having to write programs in lower level languages.
With the advent of modern reporting and analytics tools, users no longer had to write any SQL
at all because the tools did that for them. They just had to have an understanding of the data
model. Which brings us back to the original data model problem. The EBR with search
changes this paradigm. Now, a business user can access their data without having to know
anything about SQL or about the underlying data model.

They only need to know how to use a text search tool. The EBR with Search enables the
concept of self-service, end-user data access.

With a modest investment to define the application’s key business objects as EBRs, and the
power of search enabled by SOLIXCloud, an organization can meet the end-user data access
requirements and keeps costs low to maximize the savings that can be harvested and be
returned to the IT budget for use on more strategic initiatives.

Solving the End User Challenge

The reluctance of application end users to allow their data to be moved to an archive should
not be a surprise. Every end user organization has their own mission and challenges and
asking them to take some of their valuable time to learn a new way to access data will need to
be justified. For many end users, the answer will be to either leave the application in place or
to replicate all of the screens and reports in the application before decommissioning it. As we
have seen, neither of these options are viable if we wish to harvest any cost savings.

The answer for many organizations is the adoption of self-service, end-user data access
powered by EBRs and search. As we have seen, one EBR representing a key business object in
the application can replace many screens and reports. Coupled with the project accelerators
provided by the Solix Application Retirement Factory team, which include out-of-the-box EBR
definitions for most enterprise class commercial applications, you have the start to a very
cost-effective solution to this challenge.

Solix CDP enables self-service, end-user data access through a workbench of tools for ad hoc
query, structured reports and text search. Role-based security enforces access control in
Solix CDP, meaning users can only retrieve data that they have been authorized to see. Once
an end-user retrieves their search result, the data can be easily loaded into Excel where the
user can slice and dice, sort, and format the data as they see fit. This capability makes it
possible for a single EBR to replace multiple SQL based reports and forms and more
importantly, eliminates the user from understanding the complexities behind the data.

Here is a simple search example from a decommissioned PeopleSoft application:

Based on our experience, EBRs address many of the use cases through self-service. However,
Solix CDP also provides the flexibility of other data access options including online forms,
fixed format reports, ad-hoc SQL reports, use of existing SQL code, and access to data using
other reporting and analytics tools.

For use cases where the data must be retrieved in real time and frequently, Solix CDP provides
a forms functionality to replicate an application inquiry screen. This might be useful for a
customer support team that needs to look up customer history or product warranty
information from the archive while the customer is on the phone.

For situations where a fixed format report is needed, Solix CDP provides a graphical report
writer. This can be useful when the same information needs to be retrieved frequently and
delivered in a fixed format to the requestor. A fixed format report might be useful for an
accounting team needing to provide an account reconciliation report to an outside auditor in
an Excel workbook. Or, an HR team might need to produce a timesheet report for an employee
or department and deliver the data in a PDF format. The CDP report writer would be an
appropriate tool for these use cases.

There may be situations where ad-hoc queries are required as well as searches, forms, or
reports. For this use case, Solix CDP provides the SQL Editor functionality. Typically used by
an IT professional, the SQL Editor allows for direct entry and execution of a SQL statement
(assuming the user has been granted access to the requested tables) as well as execution of
sql statements stored in text files. As previously noted, a best practice recommended by the
Solix Application Retirement Factory team is to preserve custom SQL report code in the
archive for future use. Not only can this code provide valuable insight into the data model, but
in many cases, it can be executed directly against the tables now stored in the archive. Solix
CDP uses an ANSI SQL compatible query engine, so the custom SQL code is likely usable as-is
and in rare cases it may need to be tweaked to work in this environment. If a large number of
custom reports existed for the custom application and it is possible to harvest the SQL code
from these reports, re-creating them using the SQL editor can be a very cost-effective way to
meet the end user data access requirements. These queries can also be saved for future
reuse.

The final data access functionality option available in Solix CDP is the CDP API. This API makes
it possible for end users to access data in the archive using other data reporting and analytics
tools. The CDP API uses a standards-based REST technology, making it compatible with most
modern tools.

Now, what is the best way to meet the end user resistance challenge? Solix recommends
minimizing the amount of effort spent up front building data access. The most common
mistake made by organizations is to assume that all of the reports that were needed when the
application was in production running the business will be needed after the application has
been decommissioned. All too often, organizations will build expensive reports up front and
find that they are rarely or never used. If it seems that this recommendation to minimize
reporting seems to be in direct conflict with the end-user resistance challenge, it absolutely
is. So, what is to be done? A balance must be struck between the end-user reporting demands
and the cost of the project (which will eat up potential cost savings).

That balance can usually be found with the combination of self-service end-user data access
powered by EBRs and search, and the use of saved custom sql reports run via the CDP SQL
Editor. No two organizations or applications are the same but using these techniques will
typically lead to an acceptable compromise between IT and their end users.

Putting it all together

A successful application decommissioning project must be delivered for a price that is less
than the potential cost savings. There are some exceptions to this rule such as the need to
bring legacy data into compliance with new data protection and privacy laws, or the urgent
need to move data off of an unstable and unsupported hardware platform. But, for most
projects, if the price of the project is greater than the potential savings, the project will not be
economically viable. The successful project must also solve the data problem and the end
user resistance problem within these constraints.

SOLIXCloud Application Retirement as-a-service can meet these challenges. SOLIXCloud can
solve the data problem with the help of data experts on the factory team and their library of
project accelerators. SOLIXCloud also solves end-user resistance problems with the use of
self-service end user data access powered by EBRs and search. Lastly, SOLIXCloud can
deliver your application decommissioning project for the lowest possible cost per application
yielding the greatest savings for your organization.

Let’s look back in on Ted and Sara who have just attended a demonstration of SOLIXCloud
Application Retirement as a Service.

“So, Sara, what do you think of the EBR concept?”

Sara answers “Does this mean I can search for my invoices, journals, and budgets and get the data
into a spreadsheet on my own?”

Ted replies “Absolutely”.

“And can I sort and format the data any way I want?”

“Absolutely” says Ted.

“And does this mean I won’t have to submit report requests to your team and wait two weeks to
get my data?” Sara asks.

 “Absolutely” says Ted.

“Then count me in, you have my support” says Sara.

“Great, that means, we will save a huge amount of money by decommissioning this application to
the Solix Cloud”, says Ted.

“Awesome” says Sara, “Here is my enhancement list for the new application. Please use those
savings to get these done. By the way, we need the enhancements done by next quarter.”

 And, so ends another chapter in the never-ending circle of application lifecycle.

10

